Skip to main content
Log in

Thermophysical and Microwave Shielding Properties of La0.5Sr0.5CoO3−δ and its Composite with Epoxy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The microwave shielding properties of the perovskite oxide conductors, La0.5Sr0.5CoO3−δ (LSCO), were investigated. The sintered LSCO sheets were showing excellent microwave shielding properties up to 35–42 dB in the entire X and Ku bands. Towards getting a light-weight and easily processable structure, an attempt was made to composite LSCO with the easily mouldable polymer, epoxy. The thermal, dielectric and electromagnetic wave shielding properties of the composites were studied. The mechanical strength, thermal expansivity and thermal conductivity of the composites were progressively improved with LSCO addition. An improvement in the shielding effectiveness was observed with filler addition and attained a value of 10 dB in the range of 8.2–10 GHz for a maximum loaded LSCO–epoxy composite and the value spans from 3 dB to 9 dB in the Ku band region. The improvement in the shielding effectiveness with filler addition was supplemented by the gradual improvement in the dielectric permittivity, dielectric loss and AC conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.C. Tong, Advanced Materials and Design for Electromagnetic Interference Shielding (Boca Raton: CRC Press, 2009), pp. 1–5.

    Google Scholar 

  2. G.S. Kumar, D. Vishnupriya, A. Joshi, S. Datar, and T.U. Patro, Phys. Chem. Chem. Phys. 17, 20347 (2015).

    Article  Google Scholar 

  3. P. Saini and V. Choudhary, J. Nanoparticle Res. 15, 1415 (2013).

    Article  Google Scholar 

  4. D.D.L. Chung, Carbon 39, 279 (2001).

    Article  Google Scholar 

  5. N. Joseph, S.K. Singh, R.K. Sirugudu, V.R.K. Murthy, S. Ananthakumar, and M.T. Sebastian, Mater. Res. Bull. 48, 1681 (2013).

    Article  Google Scholar 

  6. Y. Wang and X. Jing, Polym. Adv. Technol. 16, 344 (2005).

    Article  Google Scholar 

  7. L. Kong, X. Yin, F. Ye, Q. Li, L. Zhang, and L. Cheng, J. Phys. Chem. 117, 2135 (2013).

    Article  Google Scholar 

  8. A.A.S. Al-Ghamdi, H. El-Mossalamy, F.M. El-Tantawy, and N. Abdel Aal, US Patent No. US20100321147 A1, 2010.

  9. R. Singh and S.G. Kulkarni, Polym. Bull. 71, 497 (2014).

    Article  Google Scholar 

  10. S.D. Hutagalung, N.H. Sahrol, Z. Ahmad, M.F. Ain, and M. Othman, Ceram. Int. 38, 671 (2012).

    Article  Google Scholar 

  11. H. Ohbayashi, T. Kudo, and T. Gejo, Jpn. J. Appl. Phys. 13, 1 (1974).

    Article  Google Scholar 

  12. A.N. Petrov, O.F. Kononchuk, A.V. Andreev, V.A. Cherepanov, and P. Kofstad, Solid State Ionics 80, 189 (1995).

    Article  Google Scholar 

  13. A. Endo, S. Wada, C.J. Wen, H. Komiyama, and K. Yamada, J. Electrochem. Soc. 145, L35 (1998).

    Article  Google Scholar 

  14. W.W. Li, Z.G. Hu, Y.W. Li, M. Zhu, Z.Q. Zhu, J.H. Chu, and A.C.S. Appl, Mater. Interfaces 2, 896 (2010).

    Article  Google Scholar 

  15. J. Suntivich, H.A. Gasteiger, N. Yabuuchi, and Y. Shao-Horn, J. Electrochem. Soc. 157, B1263 (2010).

    Article  Google Scholar 

  16. Y. Wang and H.J. Fan, J. Phys. Chem. C 114, 13947 (2010).

    Article  Google Scholar 

  17. A.V. Kovalevsky, V.V. Kharton, V.N. Tikhonovich, E.N. Naumovich, A.A. Tonoyan, O.P. Reut, and L.S. Boginsky, Mater. Sci. Eng., B 52, 105 (1998).

    Article  Google Scholar 

  18. W. Liu, S. Wang, Y. Chen, G. Fang, M. Li, and X.Z. Zhao, Sensors Actuators B 134, 62 (2008).

    Article  Google Scholar 

  19. J.M. Parry and P. Raccah, US Patent No. 4221827, 1980.

  20. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, J. Appl. Phys. 32, 1679 (1961).

    Article  Google Scholar 

  21. A.J. De Vries, E.S. Kooij, H. Wormeester, A.A. Mewe, and B. Poelsema, J. Appl. Phys. 101, 053703 (2007).

    Article  Google Scholar 

  22. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science 304, 422 (2004).

    Article  Google Scholar 

  23. M.G. Todd and F.G. Shi, J. Appl. Phys. 94, 4551 (2003).

    Article  Google Scholar 

  24. S.H. Park, P. Theilmann, K. Yang, A.M. Rao, and P.R. Bandaru, Appl. Phys. Lett. 96, 2008 (2010).

    Google Scholar 

  25. B.W. Li, Y. Shen, Z.X. Yue, and C.W. Nan, Appl. Phys. Lett. 89, 132504 (2006).

    Article  Google Scholar 

  26. P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, and S.K. Dhawan, Mater. Chem. Phys. 113, 919 (2009).

    Article  Google Scholar 

  27. N. Joseph, J. Varghese, and M.T. Sebastian, J. Mater. Chem. C 4, 999 (2016).

    Article  Google Scholar 

  28. N. Joseph and M.T. Sebastian, Mater. Lett. 90, 64 (2013).

    Article  Google Scholar 

  29. Y. Xu, Y. Li, W. Hua, A. Zhang, and J. Bao, ACS Appl. Mater. Interfaces 8, 24131 (2016).

    Article  Google Scholar 

  30. G.E. Youngblood, D.J. Senor, R.H. Jones, and W. Kowbel, J. Nucl. Mater. 62, 1120 (2002).

    Article  Google Scholar 

  31. K.C. Yung, B.L. Zhu, T.M. Yue, and C.S. Xie, Compos. Sci. Technol. 69, 260 (2009).

    Article  Google Scholar 

  32. M.T. Sebastian, C.P. Menon, J. Philip, and R.W. Schwartz, J. Appl. Phys. 94, 3206 (2003).

    Article  Google Scholar 

  33. B.L. Zhu, J. Ma, J. Wu, K.C. Yung, and C.S. Xie, J. Appl. Polym. Sci. 118, 2754 (2010).

    Article  Google Scholar 

  34. X. Chen, J. Yu, and S.B. Adler, Chem. Mater. 17, 4537 (2005).

    Article  Google Scholar 

  35. L. Holliday and J. Robinson, J. Mater. Sci. 8, 301 (1973).

    Article  Google Scholar 

  36. J.P. Gorninski, D.C. Dal Molin, and C.S. Kazmierczak, Cem. Concr. Compos. 29, 637 (2007).

    Article  Google Scholar 

  37. A.M. Nicolson and G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970).

    Article  Google Scholar 

  38. W.B. Weir, Proc. IEEE 62, 33 (1974).

    Article  Google Scholar 

  39. K.S. Deepa, P. Shaiju, M.T. Sebastian, E.B. Gowd, and J. James, Phys. Chem. Chem. Phys. 16, 17008 (2014).

    Article  Google Scholar 

  40. M.A. Señarís-Rodríguez and J.B. Goodenough, J. Solid State Chem. 118, 323 (1995).

    Article  Google Scholar 

  41. M.H. Al-Saleh and U. Sundararaj, J. Phys. D Appl. Phys. 46, 035304 (2013).

    Article  Google Scholar 

  42. K.S. Deepa, M.T. Sebastian, and J. James, Appl. Phys. Lett. 91, 202904 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, K. S. Dijith, is thankful to the University Grants Commission, New Delhi for the financial support. The author, K. P. Surendran, would like to acknowledge the Indo-Portuguese bilateral project (INT/Portugal/P-09/2013). The authors are also thankful to M. R. Chandran and P. Prabhakar Rao for extending XRD and SEM facilities and S. Ananthakumar for mechanical property measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuzhichalil Peethambharan Surendran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dijith, K.S., Pillai, S. & Surendran, K.P. Thermophysical and Microwave Shielding Properties of La0.5Sr0.5CoO3−δ and its Composite with Epoxy. J. Electron. Mater. 46, 5158–5167 (2017). https://doi.org/10.1007/s11664-017-5520-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5520-y

Keywords

Navigation