Skip to main content
Log in

Coral reef-like MoS2 microspheres with 1T/2H phase as high-performance anode material for sodium ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Coral reef-like MoS2 microspheres (MoS2-MS) with 1T/2H phase is synthesized by a simple one-step hydrothermal method. It is found that this material has disordered structure, rich defects and large interlayer spacing. As it is used as the anode material for sodium ion batteries (SIBs), a stable specific capacity of 467 mA h g−1 at a current density of 100 mA g−1 after 100 cycles is delivered. Moreover, after 500-cycle test at 1 A g−1, a highly stable specific capacity is still maintained at 412 mA h g−1. In addition, even at a high current density of 20 A g−1, the MoS2-MS electrode delivers a specific capacity of 100 mA h g−1. It is considered that the 1T/2H phase MoS2-MS with a disordered structure can effectively enhance the electrical conductivity for the rate performance improvement, and furthermore, the rich defects provide more active sites for Na+ storage and the large interlayer spacing allows the rapid diffusion of the Na+ ions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Luo W, Shen F, Bommier C, Zhu HL, Ji XL, Hu LB (2016) Na-ion battery anodes: materials and electrochemistry. Acc Chem Res 49:231–240

    CAS  Google Scholar 

  2. Pan HL, Hu YS, Chen LQ (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360

    CAS  Google Scholar 

  3. Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Edit 54:3431–3448

    CAS  Google Scholar 

  4. Ortiz-Vitoriano N, Drewett NE, Gonzalo E, Rojo T (2017) High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ Sci 10:1051–1074

    CAS  Google Scholar 

  5. Hu XL, Zhang W, Liu XX, Mei YN, Huang YH (2015) Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 44:2376–2404

    CAS  Google Scholar 

  6. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614

    CAS  Google Scholar 

  7. Jing LY, Lian G, Niu FE et al (2018) Few-atomic-layered hollow nanospheres constructed from alternate intercalation of carbon and MoS2 monolayers for sodium and lithium storage. Nano Energy 51:546–555

    CAS  Google Scholar 

  8. Yu DX, Pang Q, Gao Y, Wei YJ, Wang CZ, Chen G, Du F (2018) Hierarchical flower-like VS2 nanosheets—a high rate-capacity and stable anode material for sodium-ion battery. Energy Storage Mater 11:1–7

    Google Scholar 

  9. Liu YH, Yu XY, Fang YJ, Zhu XS, Bao JC, Zhou XS, Lou XW (2018) Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule 2:725–735

    CAS  Google Scholar 

  10. Wang Y, Kong DZ, Huang SZ et al (2018) 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J Mater Chem A 6:10813–10824

    CAS  Google Scholar 

  11. Wang TY, Chen SQ, Pang H, Xue HG, Yu Y (2017) MoS2-based nanocomposites for electrochemical energy etorage. Adv Sci 4:1600289

    Google Scholar 

  12. Xiao Y, Lee SH, Sun YK (2017) The application of metal sulfides in sodium ion batteries. Adv Energy Mater 7:1601329

    Google Scholar 

  13. Choi SH, Ko YN, Lee JK, Kang YC (2015) 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Funct Mater 25:1780–1788

    CAS  Google Scholar 

  14. Xu X, Zhao RS, Ai W et al (2018) Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: toward fast sodium storage by tunable pseudocapacitance. Adv Mater 30:1800658

    Google Scholar 

  15. Hu Z, Liu QN, Chou SL, Dou SX (2017) Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv Mater 29:1700606

    Google Scholar 

  16. Zhao XJ, Wang G, Liu XJ, Zheng XL, Wang H (2018) Ultrathin MoS2 with expanded interlayers supported on hierarchical polypyrrole-derived amorphous N-doped carbon tubular structures for high-performance Li/Na-ion batteries. Nano Res 11:3603–3618

    CAS  Google Scholar 

  17. Yao K, Xu ZW, Li Z, Liu XY, Shen XT, Cao LY, Huang JF (2018) Synthesis of grain-like MoS2 for high-performance sodium-ion batteries. Chemsuschem 11:2130–2137

    CAS  Google Scholar 

  18. Li YF, Liang YL, Robles Hernandez FC, Deog Yoo H, An QY, Yao Y (2015) Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites. Nano Energy 15:453–461

    Google Scholar 

  19. Hu Z, Wang LX, Zhang K, Wang JB, Cheng FY, Tao ZL, Chen J (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Edit 53:12794–12798

    CAS  Google Scholar 

  20. Zhang ZY, Wu SL, Cheng JY, Zhang WJ (2018) MoS2 nanobelts with (002) plane edges-enriched flat surfaces for high-rate sodium and lithium storage. Energy Storage Mater 15:65–74

    Google Scholar 

  21. Yao K, Xu ZW, Huang JF et al (2019) Bundled defect-rich MoS2 for a high-rate and long-life sodium-ion battery: achieving 3D diffusion of sodium ion by vacancies to improve kinetics. Small 15:1805405

    Google Scholar 

  22. Wang M, Li GD, Xu HY, Qian YT, Yang J (2013) Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl Mater Interfaces 5:1003–1008

    CAS  Google Scholar 

  23. Hu X, Li Y, Zeng G, Jia JC, Zhan HB, Wen ZH (2018) Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage. ACS Nano 12:1592–1602

    CAS  Google Scholar 

  24. Li P, Jeong JY, Jin BJ, Zhang K, Park JH (2018) Vertically oriented MoS2 with spatially controlled geometry on nitrogenous graphene sheets for high-performance sodium-ion batteries. Adv Energy Mater 8:1703300

    Google Scholar 

  25. Li JL, Qin W, Xie JP, Lin R, Wang ZL, Pan LK, Mai WJ (2018) Rational design of MoS2-reduced graphene oxide sponges as free-standing anodes for sodium-ion batteries. Chem Eng J 332:260–266

    CAS  Google Scholar 

  26. Lu B, Liu J, Hu RZ, Wang H, Liu JW, Zhu M (2018) C@MoS2@PPy sandwich-like nanotube arrays as an ultrastable and high-rate flexible anode for Li/Na-ion batteries. Energy Storage Mater 14:118–128

    Google Scholar 

  27. Zhu HL, Zhang F, Li JR, Tang YB (2018) Penne-like MoS2/carbon nanocomposite as anode for sodium-ion-based dual-ion battery. Small 14:1703951

    Google Scholar 

  28. Lu YY, Zhao Q, Zhang N, Lei KX, Li FJ, Chen J (2016) Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv Funct Mater 26:911–918

    CAS  Google Scholar 

  29. Zak A, Feldman Y, Lyakhovitskaya V et al (2002) Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J Am Chem Soc 124:4747–4758

    CAS  Google Scholar 

  30. Chang K, Chen WX, Ma L et al (2011) Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J Mater Chem 21:6251–6257

    CAS  Google Scholar 

  31. Chen XY, Wang ZM, Wei YZ et al (2019) High phase-purity 1T-MoS2 utrathin nanosheets by a spatially confined template. Angew Chem Int Edit 58:17621–17624

    CAS  Google Scholar 

  32. Xu CY, Jiang L, Li X et al (2020) Miniaturized high-performance metallic 1T-phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses. Nano Energy 67:104260

    Google Scholar 

  33. Sun D, Huang D, Wang HY et al (2019) 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy 61:361–369

    CAS  Google Scholar 

  34. Zhang SP, Chowdari BVR, Wen ZY, Jin J, Yang JH (2015) Constructing highly oriented configuration by few-layer MoS2: toward high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano 9:12464–12472

    CAS  Google Scholar 

  35. Geng XM, Sun WW, Wu W et al (2016) Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat Commun 7:1–7

    Google Scholar 

  36. Cummins DR, Martinez U, Sherehiy A et al (2016) Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nat Commun 7:1–10

    Google Scholar 

  37. Wang JJ, Luo C, Gao T, Langrock A, Mignerey AC, Wang CS (2015) An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11:473–481

    CAS  Google Scholar 

  38. Fan XB, Xu PT, Zhou DK et al (2015) Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett 15:5956–5960

    CAS  Google Scholar 

  39. Li ZY, Ottmann A, Zhang T et al (2017) Preparation of hierarchical C@MoS2@C sandwiched hollow spheres for lithium ion batteries. J Mater Chem A 5:3987–3994

    CAS  Google Scholar 

  40. Li KK, Zhang J, Lin DM et al (2019) Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat Commun 10:1–10

    Google Scholar 

  41. Zhao ZH, Hu XD, Wang HQ et al (2018) Superelastic 3D few-layer MoS2/carbon framework heterogeneous electrodes for highly reversible sodium-ion batteries. Nano Energy 48:526–535

    CAS  Google Scholar 

  42. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151

    CAS  Google Scholar 

  43. Chao DL, Zhu CR, Yang PH et al (2016) Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun 7:1–8

    Google Scholar 

  44. Zheng FH, Zhong WT, Deng Q et al (2019) Three-dimensional (3D) flower-like MoSe2/N-doped carbon composite as a long-life and high-rate anode material for sodium-ion batteries. Chem Eng J 357:226–236

    CAS  Google Scholar 

  45. Zhang Y, Yu SM, Wang H et al (2018) A novel carbon-decorated hollow flower-like MoS2 nanostructure wrapped with RGO for enhanced sodium-ion storage. Chem Eng J 343:180–188

    CAS  Google Scholar 

  46. Shan TT, Xin S, You Y, Cong HP, Yu SH, Manthiram A (2016) Combining nitrogen-doped graphene sheets and MoS2: a unique film-foam-film structure for enhanced lithium storage. Angew Chem Int Edit 55:12783–12788

    CAS  Google Scholar 

  47. Tang WJ, Wang XL, Xie D, Xia XH, Gu CD, Tu JP (2018) Hollow metallic 1T MoS2 arrays grown on carbon cloth: a freestanding electrode for sodium ion batteries. J Mater Chem A 6:18318–18324

    CAS  Google Scholar 

  48. Wu JX, Liu JP, Cui J et al (2020) Dual-phase MoS2 as a high-performance sodium-ion battery anode. J Mater Chem A 8:2114–2122

    Google Scholar 

Download references

Acknowledgements

This work is supported by ZiQoo Chemical Co. Ltd. X. Yue and Z. Xie gratefully acknowledge China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abuliti Abudula or Guoqing Guan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Wang, J., Xie, Z. et al. Coral reef-like MoS2 microspheres with 1T/2H phase as high-performance anode material for sodium ion batteries. J Mater Sci 55, 14389–14400 (2020). https://doi.org/10.1007/s10853-020-04964-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04964-1

Navigation