Skip to main content

Advertisement

Log in

Dopamine-derived N-doped carbon-encapsulated MoS2 microspheres as a high-performance anode for sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Two-dimensional lamellar MoS2 has been widely studied as an anode material for sodium-ion batteries. However, MoS2 exhibits low electrical conductivity and large volume change during the electrochemical charge-discharge process, resulting in poor electrochemical performance. In this work, the dopamine-derived N-doped carbon-encapsulated MoS2 microsphere (MoS2@NC) composite material was synthesized and employed as anode material for sodium-ion batteries (SIBs). As-prepared MoS2@NC composites exhibited an excellent cycle performance with high specific capacity of 480 mAh g−1 at a current density of 100 mA g−1 after 100 cycles and outstanding rate capability (the capacities of 484, 456, 425, 408, and 393 mAh g−1 at 0.1, 0.2, 0.5, 1, and 2 A g−1, respectively). The good electrochemical sodium storage performance for MoS2@NC is probably attributed to N-doped carbon layer on the surface of MoS2, which can effectively suppress the volume expansion of MoS2, increase the electric conductivity and limit contact with electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682. https://doi.org/10.1021/cr500192f

    Article  CAS  PubMed  Google Scholar 

  2. Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ma X, Ceder G (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4(9):3680. https://doi.org/10.1039/c1ee01782a

    Article  CAS  Google Scholar 

  3. Hou H, Qiu X, Wei W, Zhang Y, Ji X (2017) Carbon anode materials for advanced sodium-ion batteries. Adv Energy Mater 7(24). https://doi.org/10.1002/aenm.201602898

  4. Lao M, Zhang Y, Luo W, Yan Q, Sun W, Dou SX (2017) Alloy-based anode materials toward advanced sodium-ion batteries. Adv Mater 29(48). https://doi.org/10.1002/adma.201700622

  5. Sun N, Guan Z, Liu Y, Cao Y, Zhu Q, Liu H, Wang Z, Zhang P, Xu B (2019) Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv Energy Mater 9(32):1901351. https://doi.org/10.1002/aenm.201901351

    Article  CAS  Google Scholar 

  6. Zhang X, Liu X, Yang C, Li N, Ji T, Yan K, Zhu B, Yin J, Zhao J, Li Y (2019) A V2O5-nanosheets-coated hard carbon fiber fabric as high-performance anode for sodium ion battery. Surf Coat Technol 358:661–666. https://doi.org/10.1016/j.surfcoat.2018.11.096

    Article  CAS  Google Scholar 

  7. Zhang R, Li H, Sun D, Luan J, Huang X, Tang Y, Wang H (2018) Facile preparation of robust porous MoS2/C nanosheet networks as anode material for sodium ion batteries. J Mater Sci 54(3):2472–2482. https://doi.org/10.1007/s10853-018-2991-z

    Article  CAS  Google Scholar 

  8. Hou M, Qiu Y, Yan G, Wang J, Zhan D, Liu X, Gao J, Lai L (2019) Aging mechanism of MoS2 nanosheets confined in N-doped mesoporous carbon spheres for sodium-ion batteries. Nano Energy 62:299–309. https://doi.org/10.1016/j.nanoen.2019.05.048

    Article  CAS  Google Scholar 

  9. Sun Q, Dai Y, Ma Y, Jing T, Wei W, Huang B (2016) Ab initio prediction and characterization of Mo2C monolayer as anodes for Lithium-ion and sodium-ion batteries. J Phys Chem Lett 7(6):937–943. https://doi.org/10.1021/acs.jpclett.6b00171

    Article  CAS  PubMed  Google Scholar 

  10. Peng S, Han X, Li L, Zhu Z, Cheng F, Srinivansan M, Adams S, Ramakrishna S (2016) Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 12(10):1359–1368. https://doi.org/10.1002/smll.201502788

    Article  CAS  PubMed  Google Scholar 

  11. Xu X, Fan Z, Yu X, Ding S, Yu D, Lou XWD (2014) A nanosheets-on-channel architecture constructed from MoS2and CMK-3 for high-capacity and long-cycle-life lithium storage. Adv Energy Mater 4(17). https://doi.org/10.1002/aenm.201400902

  12. Gong F, Peng L, Liu M, Meng E, Li F (2019) Effect of RGO coating on lithium storage performance of monodispersed core–shell MoS2 superspheres. J Mater Sci 54(13):9643–9655. https://doi.org/10.1007/s10853-019-03587-5

    Article  CAS  Google Scholar 

  13. Xiong QQ, Ji ZG (2016) Controllable growth of MoS2/C flower-like microspheres with enhanced electrochemical performance for lithium ion batteries. J Alloys Compd 673:215–219. https://doi.org/10.1016/j.jallcom.2016.02.253

    Article  CAS  Google Scholar 

  14. Liu Y, Zhao Y, Jiao L, Chen J (2014) A graphene-like MoS2/graphene nanocomposite as a high performance anode for lithium ion batteries. J Mater Chem A 2(32):13109–13115. https://doi.org/10.1039/c4ta01644k

    Article  CAS  Google Scholar 

  15. Hu S, Chen W, Zhou J, Yin F, Uchaker E, Zhang Q, Cao G (2014) Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes. J Mater Chem A 2(21):7862. https://doi.org/10.1039/c4ta01247j

    Article  CAS  Google Scholar 

  16. Sun P, Zhang W, Hu X, Yuan L, Huang Y (2014) Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material for lithium-ion batteries. J Mater Chem A 2(10):3498–3504. https://doi.org/10.1039/c3ta13994h

    Article  CAS  Google Scholar 

  17. Yang T, Chen Y, Qu B, Mei L, Lei D, Zhang H, Li Q, Wang T (2014) Construction of 3D flower-like MoS2 spheres with nanosheets as anode materials for high-performance lithium ion batteries. Electrochim Acta 115:165–169. https://doi.org/10.1016/j.electacta.2013.10.098

    Article  CAS  Google Scholar 

  18. Yuan G, Wang G, Wang H, Bai J (2016) Half-cell and full-cell investigations of 3D hierarchical MoS2/graphene composite on anode performance in lithium-ion batteries. J Alloys Compd 660:62–72. https://doi.org/10.1016/j.jallcom.2015.11.079

    Article  CAS  Google Scholar 

  19. Li Y, Mao H, Zheng C, Wang J, Che Z, Wei M (2020) Compositing reduced graphene oxide with interlayer spacing enlarged MoS2 for performance enhanced sodium-ion batteries. J Phys Chem Solids:136. https://doi.org/10.1016/j.jpcs.2019.109163

  20. Chen F, Wu L, Zhou Z, Ju J, Zhao Z, Zhong M, Kuang T (2019) MoS2 decorated lignin-derived hierarchical mesoporous carbon hybrid nanospheres with exceptional Li-ion battery cycle stability. Chin Chem Lett 30(1):197–202. https://doi.org/10.1016/j.cclet.2018.10.007

    Article  CAS  Google Scholar 

  21. Feng M, Zhang M, Zhang H, Liu X, Feng H (2019) Room-temperature carbon coating on MoS2/Graphene hybrids with carbon dioxide for enhanced sodium storage. Carbon 153:217–224. https://doi.org/10.1016/j.carbon.2019.07.021

    Article  CAS  Google Scholar 

  22. Li N, Liu Z, Gao Q, Li X, Wang R, Yan X, Li Y (2017) In situ synthesis of concentric C@MoS2 core–shell nanospheres as anode for lithium ion battery. J Mater Sci 52(22):13183–13191. https://doi.org/10.1007/s10853-017-1411-0

    Article  CAS  Google Scholar 

  23. Wang Y, Jin Y, Li S, Han J, Ju Z, Jia M (2018) Flower-like MoS2 supported on three-dimensional graphene aerogels as high-performance anode materials for sodium-ion batteries. Ionics 24(11):3431–3437. https://doi.org/10.1007/s11581-018-2528-0

    Article  CAS  Google Scholar 

  24. Cheng A, Zhang H, Zhong W, Li Z, Tang Y, Li Z (2019) Enhanced electrochemical properties of single-layer MoS2 embedded in carbon nanofibers by electrospinning as anode materials for sodium-ion batteries. J Electroanal Chem 843:31–36. https://doi.org/10.1016/j.jelechem.2019.04.059

    Article  CAS  Google Scholar 

  25. Lin M, Deng M, Zhou C, Shu Y, Yang L, Ouyang L, Gao Q, Zhu M (2019) Popcorn derived carbon enhances the cyclic stability of MoS2 as an anode material for sodium-ion batteries. Electrochim Acta 309:25–33. https://doi.org/10.1016/j.electacta.2019.04.070

    Article  CAS  Google Scholar 

  26. Wang S, Cao F, Li Y, Zhang Z, Zhou D, Yang Y, Tang Z (2019) MoS2-coupled carbon nanosheets encapsulated on sodium titanate nanowires as super-durable anode material for sodium-ion batteries. Adv Sci (Weinh) 6(10):1900028. https://doi.org/10.1002/advs.201900028

    Article  CAS  Google Scholar 

  27. Hu Y-Y, Bai Y-L, Wu X-Y, Wei X, Wang K-X, Chen J-S (2019) MoS2 nanoflakes integrated in a 3D carbon framework for high-performance sodium-ion batteries. J Alloys Compd 797:1126–1132. https://doi.org/10.1016/j.jallcom.2019.05.142

    Article  CAS  Google Scholar 

  28. Pan E, Jin Y, Zhao C, Jia M, Chang Q, Zhang R, Jia M (2019) Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries. Appl Surf Sci 475:12–19. https://doi.org/10.1016/j.apsusc.2018.12.259

    Article  CAS  Google Scholar 

  29. Jia M, Jin Y, Zhao P, Zhao C, Jia M, Wang L, He X (2019) Hollow NiCoSe2 microspheres@N-doped carbon as high-performance pseudocapacitive anode materials for sodium ion batteries. Electrochim Acta 310:230–239. https://doi.org/10.1016/j.electacta.2019.04.124

    Article  CAS  Google Scholar 

  30. Han L, Wu S, Hu Z, Chen M, Ding J, Wang S (2020) Hierarchically porous MoS2–carbon hollow rhomboids for superior performance of the anode of sodium-ion batteries. ACS Appl Mater Interfaces 12(9):10402–10409. https://doi.org/10.1021/acsami.9b21365

    Article  CAS  PubMed  Google Scholar 

  31. Zhang R, Wang J, Li C, Liu T, Yao T, Zhu L, Han X, Wang H (2020) Facile synthesis of hybrid MoS2/graphene nanosheets as high-performance anode for sodium-ion batteries. Ionics 26:711–717. https://doi.org/10.1007/s11581-019-03235-7

    Article  CAS  Google Scholar 

  32. Wang S, Tu J, Yuan Y, Ma R, Jiao S (2016) Sodium modified molybdenum sulfide via molten salt electrolysis as an anode material for high performance sodium-ion batteries. Phys Chem Chem Phys 8:3204

    Article  CAS  Google Scholar 

  33. Anwer S, Huang Y, Li B, Govindan B, Liao K, Cantwell WJ, Wu F, Chen R, Zheng L (2019) Nature-inspired, graphene-wrapped 3D MoS2 ultrathin microflower architecture as a high-performance anode material for sodium-ion batteries. ACS Appl Mater Interfaces 11(25):22323–22331. https://doi.org/10.1021/acsami.9b04260

    Article  CAS  PubMed  Google Scholar 

  34. Brown E, Yan P, Tekik H, Elangovan A, Wang J, Lin D, Li J (2019) 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes. Mater Des 170:107689. https://doi.org/10.1016/j.matdes.2019.107689

    Article  CAS  Google Scholar 

  35. Wang C, Zhan C, Ren X, Lv R, Shen W, Kang F, Huang Z-H (2019) MoS2/carbon composites prepared by ball-milling and pyrolysis for the high-rate and stable anode of lithium ion capacitors. RSC Adv 9(72):42316–42323. https://doi.org/10.1039/c9ra09411c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zou J, Li F, Bissett MA, Kim F, Hardwick LJ (2020) Intercalation behaviour of Li and Na into 3-layer and multilayer MoS2 flakes. Electrochim Acta 331:135284. https://doi.org/10.1016/j.electacta.2019.135284

    Article  CAS  Google Scholar 

  37. Wang J, Han L, Li X, Zeng L, Wei M (2019) MoS2 hollow spheres in ether-based electrolyte for high performance sodium ion battery. J Colloid Interface Sci 548:20–24. https://doi.org/10.1016/j.jcis.2019.04.025

    Article  CAS  PubMed  Google Scholar 

  38. Zeng L, Luo F, Chen X, Xu L, Xiong P, Feng X, Luo Y, Chen Q, Wei M, Qian Q (2019) An ultra-small few-layer MoS2-hierarchical porous carbon fiber composite obtained via nanocasting synthesis for sodium-ion battery anodes with excellent long-term cycling performance. Dalton Trans 48(13):4149–4156. https://doi.org/10.1039/c8dt04744h

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Program of Beijing Municipal Education Commission (SQKM201710005007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhong Jin or Mengqiu Jia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, H., Zheng, H., Jin, Y. et al. Dopamine-derived N-doped carbon-encapsulated MoS2 microspheres as a high-performance anode for sodium-ion batteries. Ionics 26, 5543–5551 (2020). https://doi.org/10.1007/s11581-020-03734-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03734-y

Keywords

Navigation