Journal of Materials Science

, Volume 54, Issue 21, pp 13467–13478 | Cite as

Phase evolution and relaxor behavior of BiScO3–PbTiO3–0.05Pb(Yb1/2Nb1/2)O3 ternary ceramics

  • Zhencheng Lan
  • Jia Liu
  • Shaokai Ren
  • Xinyu Jiang
  • Kaiyuan Chen
  • Liang Fang
  • Biaolin Peng
  • Dawei WangEmail author
  • Laijun LiuEmail author


High-temperature piezoelectric ceramics (0.95 − x)BiScO3xPbTiO3–0.05Pb(Yb1/2Nb1/2)O3 (BS–xPT–PYN, x = 0.56–0.64) were prepared by a conventional solid-state reaction method. X-ray diffraction and Raman spectra demonstrated that the ceramics convert from monoclinic phase (x ≤ 0.58) to tetragonal phase (0.62 ≤ x ≤ 0.64). A phase coexistence of monoclinic and tetragonal in the vicinity of the MPB (x = 0.60) enhances the ferroelectric polarizability by a dynamical conversion between two energy-degenerate states with d33 = 392 pC/N, kp = 53.3% and Pr = 38.8 μC/cm2 and the operation temperature up to ~ 400 °C. Relaxor behaviors, which following the V–F law, are presented in this system and their dipole activation energy decrease for higher component x. The phase fraction versus temperature of the MPB (x = 0.60) was investigated by an in situ XRD, which gives an insight into the origin of the high-temperature piezoelectricity.



Funding was provided by Natural Science Foundation of China (Grant Nos. 11564010, 51402196, 51602159, 11574246 and U1537210), National Basic Research Program of China (Grant No. 2015CB654903), Natural Science Foundation of Guangxi (Grant Nos. GA139008, AA138162, AA294014, CB380006, FA198015).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X (2015) Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers-a review. Prog Mater Sci 68:1–66. CrossRefGoogle Scholar
  2. 2.
    Chen J, Jin G, Wang C-M, Cheng J, Damjanovic D (2014) Reduced dielectric loss and strain hysteresis in Fe and Mn comodified high-temperature BiScO3–PbTiO3 ceramics. J Am Ceram Soc 97:3890–3896. CrossRefGoogle Scholar
  3. 3.
    Dai Z, Liu W, Lin D, Ren X (2018) Electrical properties of zirconium-modified BiScO3–PbTiO3 piezoelectric ceramics at re-designed phase boundary. Mater Lett 215:46–49. CrossRefGoogle Scholar
  4. 4.
    Deng B, Wei Q, He C, Wang Z, Yang X, Long X (2019) Effect of Pb(Mn1/3Sb2/3)O3 addition on the electrical properties of BiScO3–PbTiO3 piezoelectric ceramics. J Alloys Compd 790:397–404. CrossRefGoogle Scholar
  5. 5.
    Chen J, Liu G, Cheng J, Dong S (2015) Actuation performance and heat generation of shear-bending actuator based on BiScO3–PbTiO3 ceramics from 25 to 300°C. Appl Phys Lett 107:032906. CrossRefGoogle Scholar
  6. 6.
    Jia H, Hu X, Chen J (2019) Temperature-dependent piezoelectric strain and resonance performance of Fe2O3-modified BiScO3–PbTiO3-Pb(Nb1/3Mn2/3)O3 ceramics. J Eur Ceram Soc 39:2348–2353. CrossRefGoogle Scholar
  7. 7.
    Zhang S, Lebrun L, Rhee S, Eitel RE, Randall CA, Shrout TR (2002) Crystal growth and characterization of new high Curie temperature (1-x)BiScO3-x PbTiO3 single crystals. J Cryst Growth 236:210–216. CrossRefGoogle Scholar
  8. 8.
    Liu Z, Zhao C, Xie R, Wu J (2018) Tailored electrical properties in ternary BiScO3–PbTiO3 ceramics by composition modification. Ceram Int 44:8057–8063. CrossRefGoogle Scholar
  9. 9.
    Kang H, Chen J, Liu L et al (2012) Preparation and electrical properties of high-T C piezoelectric ceramics of strontium-substituted Bi(Ni1/2Ti1/2)O3-PbTiO3. J Am Ceram Soc 95:1170–1173. CrossRefGoogle Scholar
  10. 10.
    Zhang Q, Li Z, Li F, Xu Z, Yao X (2010) Temperature dependence of dielectric/piezoelectric properties of (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 ceramics with an MPB composition. J Am Ceram Soc 93:3330–3334. CrossRefGoogle Scholar
  11. 11.
    Fan L, Chen J, Li S et al (2013) Enhanced piezoelectric and ferroelectric properties in the BaZrO3 substituted BiFeO3-PbTiO3. Appl Phys Lett 102:022905. CrossRefGoogle Scholar
  12. 12.
    Fan L, Chen J, Kang H et al (2012) Structure, piezoelectric, and ferroelectric properties of BaZrO3 substituted Bi(Mg1/2Ti1/2)O3-PbTiO3 perovskite. J Appl Phys 111:104118. CrossRefGoogle Scholar
  13. 13.
    Chen J, Li J, Fan L et al (2012) Enhanced piezoelectric and antiferroelectric properties of high-T C perovskite of Zr-substituted Bi(Mg1/2Ti1/2)O3-PbTiO3. J Appl Phys 112:074101. CrossRefGoogle Scholar
  14. 14.
    Hu Q, Wang Y, Wu L et al (2018) Effects of LiNbO3 doping on the microstructures and electrical properties of BiScO3–PbTiO3 piezoelectric system. J Mater Sci Mater Electron 29:18036–18044. CrossRefGoogle Scholar
  15. 15.
    Zhao H, Hou Y, Yu X, Zheng M, Zhu M (2018) Construction of high T c BiScO3–BiFeO3–PbTiO3 and its enhanced piezoelectric properties by sintering in oxygen atmosphere. J Appl Phys 124:194103. CrossRefGoogle Scholar
  16. 16.
    Zhang S, Yu Y, Wu J, Gao X, Huang C, Dong S (2018) Enhanced piezoelectric performance of BiScO3–PbTiO3 ceramics modified by 0.03Pb (Sb1/2Nb1/2)O3. J Alloys Compd 731:1140–1145. CrossRefGoogle Scholar
  17. 17.
    Talanov MV, Bush AA, Кamentsev KE, Sirotinkin VP, Segalla AG (2018) Structure-property relationships in BiScO3–PbTiO3–PbMg1/3Nb2/3O3 ceramics near the morphotropic phase boundary. J Am Ceram Soc 101:683–693. CrossRefGoogle Scholar
  18. 18.
    Zhao T-L, Chen J, Wang C-M, Yu Y, Dong S (2013) Ferroelectric, piezoelectric, and dielectric properties of BiScO3–PbTiO3–Pb(Cd1/3Nb2/3)O3 ternary high temperature piezoelectric ceramics. J Appl Phys 114:027014. CrossRefGoogle Scholar
  19. 19.
    Ohuchi H, Tsukamoto S, Ishii M, Hayakawa H (1999) Piezoelectric and structural properties of Pb(Yb1/2Nb1/2)O3–PbTiO3–PbZrO3 ceramics. J Eur Ceram Soc 19:1191–1195. CrossRefGoogle Scholar
  20. 20.
    Yamamoto T, Ohashi S, Hisano K (1997) Ferroelectric and crystallographic properties of Pb(Yb1/2Nb1/2)O3-PbTiO3 solid solution system. Ferroelectrics 196:281–284. CrossRefGoogle Scholar
  21. 21.
    Duran C, Trolier-Mckinstry S, Messing GL (2003) Processing and electrical properties of 0.5Pb(Yb1/2Nb1/2)O3-0.5PbTiO3 ceramics. J Electroceram 10:47–55. CrossRefGoogle Scholar
  22. 22.
    Kwon JR, Choo CKK, Choo WK (1991) Dielectric and X-ray diffraction studies in highly ordered complex perovskite Pb(Yb1/2Nb1/2)O3. Jpn Appl Phys 30:1028–1033. CrossRefGoogle Scholar
  23. 23.
    Noheda B, Cox DE, Shirane G, Guo R, Jones B, Cross LE (2000) Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys Rev B 63:014103. CrossRefGoogle Scholar
  24. 24.
    Pandey D, Singh AK, Baik S (2007) Stability of ferroic phases in the highly piezoelectric Pb(ZrxTi1-x)O3 ceramics. Acta Crystallogr Sect A Found Crystallogr 64:192–203. CrossRefGoogle Scholar
  25. 25.
    Chaigneau J, Kiat JM, Malibert C, Bogicevic C (2007) Morphotropic phase boundaries in (BiScO3)1−x(PbTiO3)x (0.60 < x<0.75) and their relation to chemical composition and polar order. Phys Rev B 76:094111. CrossRefGoogle Scholar
  26. 26.
    Burns G, Scott BA (1973) Lattice modes in ferroelectric perovskites: PbTiO3. Phys Rev B 7:3088. CrossRefGoogle Scholar
  27. 27.
    Schütz D, Deluca M, Krauss W, Feteira A, Reichmann K (2012) Lone-pair-induced covalency as the cause of temperature-and field-induced instabilities in bismuth sodium titanate. Adv Funct Mater 22:2285–2294. CrossRefGoogle Scholar
  28. 28.
    Chen J, Shi H, Liu G, Cheng J, Dong S (2012) Temperature dependence of dielectric, piezoelectric and elastic properties of BiScO3–PbTiO3 high temperature ceramics with morphotropic phase boundary (MPB) composition. J Alloys Compd 537:280–285. CrossRefGoogle Scholar
  29. 29.
    Yao Z, Liu H, Cao M, Hao H (2010) Effects of Nb doping on the microstructures and electrical properties of 0.44Bi(Sc0.75Co0.25)O3-0.56PbTiO3 piezoelectric system. J Alloys Compd 505:281–285. CrossRefGoogle Scholar
  30. 30.
    Ryu J, Priya S, Uchino K (2003) High-T m relaxor ferroelectrics: 0.3BiScO3–0.6PbTiO3-0.1Pn1/3Nb2/3)O3. Appl Phys Lett 82:251. CrossRefGoogle Scholar
  31. 31.
    Deng J, Sun X, Liu L et al (2016) Dielectric properties of SrMnO3-doped K0.5Na0.5NbO3 lead-free ceramics. J Electron Mater 45:4089–4099. CrossRefGoogle Scholar
  32. 32.
    Liu J, Li F, Zeng Y et al (2017) Insights into the dielectric response of ferroelectric relaxors from statistical modeling. Phys Rev B 96:054115. CrossRefGoogle Scholar
  33. 33.
    Liu L, Knapp M, Ehrenberg H et al (2017) Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3-Bi½Na½TiO3 system. J Eur Ceram Soc 37:1387–1399. CrossRefGoogle Scholar
  34. 34.
    Viehland D, Jang SJ, Cross LE, Wuttig M (1990) Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys 68:2916. CrossRefGoogle Scholar
  35. 35.
    Pirc R, Blinc R (2007) Vogel–Fulcher freezing in relaxor ferroelectrics. Phys Rev B 76:020101. CrossRefGoogle Scholar
  36. 36.
    Raengthon N, Sebastian T, Cumming D, Reaney IM, Cann DP, Roedel J (2012) BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 ceramics for high-temperature capacitor applications. J Am Ceram Soc 95:3554–3561. CrossRefGoogle Scholar
  37. 37.
    Chu F, Reaney IM, Setter N (1994) Investigation of relaxors that transform spontaneously into ferroelectrics. Ferroelectrics 151:343–348. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringGuilin University of TechnologyGuilinChina
  2. 2.School of Physical Science and Technology and Guangxi Key Laboratory for Relativistic AstrophysicsGuangxi UniversityNanningChina
  3. 3.State Key Laboratory for Mechanical Behavior of Materials and School of MicroelectronicsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations