Skip to main content
Log in

Phase evolution and relaxor behavior of BiScO3–PbTiO3–0.05Pb(Yb1/2Nb1/2)O3 ternary ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-temperature piezoelectric ceramics (0.95 − x)BiScO3xPbTiO3–0.05Pb(Yb1/2Nb1/2)O3 (BS–xPT–PYN, x = 0.56–0.64) were prepared by a conventional solid-state reaction method. X-ray diffraction and Raman spectra demonstrated that the ceramics convert from monoclinic phase (x ≤ 0.58) to tetragonal phase (0.62 ≤ x ≤ 0.64). A phase coexistence of monoclinic and tetragonal in the vicinity of the MPB (x = 0.60) enhances the ferroelectric polarizability by a dynamical conversion between two energy-degenerate states with d33 = 392 pC/N, kp = 53.3% and Pr = 38.8 μC/cm2 and the operation temperature up to ~ 400 °C. Relaxor behaviors, which following the V–F law, are presented in this system and their dipole activation energy decrease for higher component x. The phase fraction versus temperature of the MPB (x = 0.60) was investigated by an in situ XRD, which gives an insight into the origin of the high-temperature piezoelectricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X (2015) Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers-a review. Prog Mater Sci 68:1–66. https://doi.org/10.1016/j.pmatsci.2014.10.002

    Article  Google Scholar 

  2. Chen J, Jin G, Wang C-M, Cheng J, Damjanovic D (2014) Reduced dielectric loss and strain hysteresis in Fe and Mn comodified high-temperature BiScO3–PbTiO3 ceramics. J Am Ceram Soc 97:3890–3896. https://doi.org/10.1111/jace.13224

    Article  Google Scholar 

  3. Dai Z, Liu W, Lin D, Ren X (2018) Electrical properties of zirconium-modified BiScO3–PbTiO3 piezoelectric ceramics at re-designed phase boundary. Mater Lett 215:46–49. https://doi.org/10.1016/j.matlet.2017.12.036

    Article  Google Scholar 

  4. Deng B, Wei Q, He C, Wang Z, Yang X, Long X (2019) Effect of Pb(Mn1/3Sb2/3)O3 addition on the electrical properties of BiScO3–PbTiO3 piezoelectric ceramics. J Alloys Compd 790:397–404. https://doi.org/10.1016/j.jallcom.2019.03.109

    Article  Google Scholar 

  5. Chen J, Liu G, Cheng J, Dong S (2015) Actuation performance and heat generation of shear-bending actuator based on BiScO3–PbTiO3 ceramics from 25 to 300°C. Appl Phys Lett 107:032906. https://doi.org/10.1063/1.4927328

    Article  Google Scholar 

  6. Jia H, Hu X, Chen J (2019) Temperature-dependent piezoelectric strain and resonance performance of Fe2O3-modified BiScO3–PbTiO3-Pb(Nb1/3Mn2/3)O3 ceramics. J Eur Ceram Soc 39:2348–2353. https://doi.org/10.1016/j.jeurceramsoc.2019.02.013

    Article  Google Scholar 

  7. Zhang S, Lebrun L, Rhee S, Eitel RE, Randall CA, Shrout TR (2002) Crystal growth and characterization of new high Curie temperature (1-x)BiScO3-x PbTiO3 single crystals. J Cryst Growth 236:210–216. https://doi.org/10.1111/jace.13224

    Article  Google Scholar 

  8. Liu Z, Zhao C, Xie R, Wu J (2018) Tailored electrical properties in ternary BiScO3–PbTiO3 ceramics by composition modification. Ceram Int 44:8057–8063. https://doi.org/10.1016/j.ceramint.2018.01.247

    Article  Google Scholar 

  9. Kang H, Chen J, Liu L et al (2012) Preparation and electrical properties of high-T C piezoelectric ceramics of strontium-substituted Bi(Ni1/2Ti1/2)O3-PbTiO3. J Am Ceram Soc 95:1170–1173. https://doi.org/10.1111/j.1551-2916.2012.05078.x

    Article  Google Scholar 

  10. Zhang Q, Li Z, Li F, Xu Z, Yao X (2010) Temperature dependence of dielectric/piezoelectric properties of (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 ceramics with an MPB composition. J Am Ceram Soc 93:3330–3334. https://doi.org/10.1111/j.1551-2916.2010.03860.x

    Article  Google Scholar 

  11. Fan L, Chen J, Li S et al (2013) Enhanced piezoelectric and ferroelectric properties in the BaZrO3 substituted BiFeO3-PbTiO3. Appl Phys Lett 102:022905. https://doi.org/10.1063/1.4775763

    Article  Google Scholar 

  12. Fan L, Chen J, Kang H et al (2012) Structure, piezoelectric, and ferroelectric properties of BaZrO3 substituted Bi(Mg1/2Ti1/2)O3-PbTiO3 perovskite. J Appl Phys 111:104118. https://doi.org/10.1063/1.4722286

    Article  Google Scholar 

  13. Chen J, Li J, Fan L et al (2012) Enhanced piezoelectric and antiferroelectric properties of high-T C perovskite of Zr-substituted Bi(Mg1/2Ti1/2)O3-PbTiO3. J Appl Phys 112:074101. https://doi.org/10.1063/1.4755790

    Article  Google Scholar 

  14. Hu Q, Wang Y, Wu L et al (2018) Effects of LiNbO3 doping on the microstructures and electrical properties of BiScO3–PbTiO3 piezoelectric system. J Mater Sci Mater Electron 29:18036–18044. https://doi.org/10.1007/s10854-018-9898-y

    Article  Google Scholar 

  15. Zhao H, Hou Y, Yu X, Zheng M, Zhu M (2018) Construction of high T c BiScO3–BiFeO3–PbTiO3 and its enhanced piezoelectric properties by sintering in oxygen atmosphere. J Appl Phys 124:194103. https://doi.org/10.1063/1.5055297

    Article  Google Scholar 

  16. Zhang S, Yu Y, Wu J, Gao X, Huang C, Dong S (2018) Enhanced piezoelectric performance of BiScO3–PbTiO3 ceramics modified by 0.03Pb (Sb1/2Nb1/2)O3. J Alloys Compd 731:1140–1145. https://doi.org/10.1016/j.jallcom.2017.10.052

    Article  Google Scholar 

  17. Talanov MV, Bush AA, Кamentsev KE, Sirotinkin VP, Segalla AG (2018) Structure-property relationships in BiScO3–PbTiO3–PbMg1/3Nb2/3O3 ceramics near the morphotropic phase boundary. J Am Ceram Soc 101:683–693. https://doi.org/10.1111/jace.15225

    Article  Google Scholar 

  18. Zhao T-L, Chen J, Wang C-M, Yu Y, Dong S (2013) Ferroelectric, piezoelectric, and dielectric properties of BiScO3–PbTiO3–Pb(Cd1/3Nb2/3)O3 ternary high temperature piezoelectric ceramics. J Appl Phys 114:027014. https://doi.org/10.1063/1.4812223

    Article  Google Scholar 

  19. Ohuchi H, Tsukamoto S, Ishii M, Hayakawa H (1999) Piezoelectric and structural properties of Pb(Yb1/2Nb1/2)O3–PbTiO3–PbZrO3 ceramics. J Eur Ceram Soc 19:1191–1195. https://doi.org/10.1016/s0955-2219(98)00402-6

    Article  Google Scholar 

  20. Yamamoto T, Ohashi S, Hisano K (1997) Ferroelectric and crystallographic properties of Pb(Yb1/2Nb1/2)O3-PbTiO3 solid solution system. Ferroelectrics 196:281–284. https://doi.org/10.1080/00150199708224180

    Article  Google Scholar 

  21. Duran C, Trolier-Mckinstry S, Messing GL (2003) Processing and electrical properties of 0.5Pb(Yb1/2Nb1/2)O3-0.5PbTiO3 ceramics. J Electroceram 10:47–55. https://doi.org/10.1023/A:1024080008850

    Article  Google Scholar 

  22. Kwon JR, Choo CKK, Choo WK (1991) Dielectric and X-ray diffraction studies in highly ordered complex perovskite Pb(Yb1/2Nb1/2)O3. Jpn Appl Phys 30:1028–1033. https://doi.org/10.1143/JJAP.30.1028

    Article  Google Scholar 

  23. Noheda B, Cox DE, Shirane G, Guo R, Jones B, Cross LE (2000) Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys Rev B 63:014103. https://doi.org/10.1103/PhysRevB.63.014103

    Article  Google Scholar 

  24. Pandey D, Singh AK, Baik S (2007) Stability of ferroic phases in the highly piezoelectric Pb(ZrxTi1-x)O3 ceramics. Acta Crystallogr Sect A Found Crystallogr 64:192–203. https://doi.org/10.1107/s0108767307055511

    Article  Google Scholar 

  25. Chaigneau J, Kiat JM, Malibert C, Bogicevic C (2007) Morphotropic phase boundaries in (BiScO3)1−x(PbTiO3)x (0.60 < x<0.75) and their relation to chemical composition and polar order. Phys Rev B 76:094111. https://doi.org/10.1103/PhysRevB.76.094111

    Article  Google Scholar 

  26. Burns G, Scott BA (1973) Lattice modes in ferroelectric perovskites: PbTiO3. Phys Rev B 7:3088. https://doi.org/10.1103/PhysRevB.7.3088

    Article  Google Scholar 

  27. Schütz D, Deluca M, Krauss W, Feteira A, Reichmann K (2012) Lone-pair-induced covalency as the cause of temperature-and field-induced instabilities in bismuth sodium titanate. Adv Funct Mater 22:2285–2294. https://doi.org/10.1002/adfm.201102758

    Article  Google Scholar 

  28. Chen J, Shi H, Liu G, Cheng J, Dong S (2012) Temperature dependence of dielectric, piezoelectric and elastic properties of BiScO3–PbTiO3 high temperature ceramics with morphotropic phase boundary (MPB) composition. J Alloys Compd 537:280–285. https://doi.org/10.1016/j.jallcom.2012.05.041

    Article  Google Scholar 

  29. Yao Z, Liu H, Cao M, Hao H (2010) Effects of Nb doping on the microstructures and electrical properties of 0.44Bi(Sc0.75Co0.25)O3-0.56PbTiO3 piezoelectric system. J Alloys Compd 505:281–285. https://doi.org/10.1016/j.jallcom.2010.06.047

    Article  Google Scholar 

  30. Ryu J, Priya S, Uchino K (2003) High-T m relaxor ferroelectrics: 0.3BiScO3–0.6PbTiO3-0.1Pn1/3Nb2/3)O3. Appl Phys Lett 82:251. https://doi.org/10.1063/1.1536028

    Article  Google Scholar 

  31. Deng J, Sun X, Liu L et al (2016) Dielectric properties of SrMnO3-doped K0.5Na0.5NbO3 lead-free ceramics. J Electron Mater 45:4089–4099. https://doi.org/10.1007/s11664-016-4595-1

    Article  Google Scholar 

  32. Liu J, Li F, Zeng Y et al (2017) Insights into the dielectric response of ferroelectric relaxors from statistical modeling. Phys Rev B 96:054115. https://doi.org/10.1103/PhysRevB.96.054115

    Article  Google Scholar 

  33. Liu L, Knapp M, Ehrenberg H et al (2017) Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3-Bi½Na½TiO3 system. J Eur Ceram Soc 37:1387–1399. https://doi.org/10.1016/j.jeurceramsoc.2016.11.024

    Article  Google Scholar 

  34. Viehland D, Jang SJ, Cross LE, Wuttig M (1990) Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys 68:2916. https://doi.org/10.1063/1.346425

    Article  Google Scholar 

  35. Pirc R, Blinc R (2007) Vogel–Fulcher freezing in relaxor ferroelectrics. Phys Rev B 76:020101. https://doi.org/10.1103/PhysRevB.76.020101

    Article  Google Scholar 

  36. Raengthon N, Sebastian T, Cumming D, Reaney IM, Cann DP, Roedel J (2012) BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 ceramics for high-temperature capacitor applications. J Am Ceram Soc 95:3554–3561. https://doi.org/10.1111/j.1551-2916.2012.05340.x

    Article  Google Scholar 

  37. Chu F, Reaney IM, Setter N (1994) Investigation of relaxors that transform spontaneously into ferroelectrics. Ferroelectrics 151:343–348. https://doi.org/10.1080/00150199408244759

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Natural Science Foundation of China (Grant Nos. 11564010, 51402196, 51602159, 11574246 and U1537210), National Basic Research Program of China (Grant No. 2015CB654903), Natural Science Foundation of Guangxi (Grant Nos. GA139008, AA138162, AA294014, CB380006, FA198015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dawei Wang or Laijun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Z., Liu, J., Ren, S. et al. Phase evolution and relaxor behavior of BiScO3–PbTiO3–0.05Pb(Yb1/2Nb1/2)O3 ternary ceramics. J Mater Sci 54, 13467–13478 (2019). https://doi.org/10.1007/s10853-019-03851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03851-8

Navigation