Skip to main content
Log in

Phase transitional behavior and electrical properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Relaxor based ternary (0.60 − x)Pb(In1/2Nb1/2)O3–0.40Pb(Mg1/3Nb2/3)–xPbTiO3 ((0.60 − x)PIN–0.40PMN–xPT) polycrystalline ceramics were synthesized by two-step columbite precursor method. The effects of PIN/PT content on phase structure, microstructure, density, and dielectric, piezoelectric, ferroelectric and pyroelectric properties of the ternary ceramics were systematically investigated. A morphotropic phase boundary (MPB) near x = 0.34 was identified by X-ray diffraction and further confirmed by their respective electrical properties. Piezoelectric, ferroelectric and pyroelectric properties were enhanced for compositions near the MPB. The 0.26PIN–0.40PMN–0.34PT ceramics show optimum electrical properties: piezoelectric coefficient d 33 = 505 pC/N, planar electromechanical coupling factor k p = 62.5 %, remnant polarization P r = 32.1 μC/cm2, coercive field E c = 8.8 kV/cm, and room temperature pyroelectric coefficient p = 0.050 μC/cm2 °C. In addition, the rhombohedral–tetragonal phase transition temperature T rt and Curie temperature T c of the ternary ceramics were identified by the temperature dependence of dielectric and pyroelectric measurements, which are much higher than those of binary PMN–PT ceramics, indicating the expanded temperature usage range of the ternary ceramics. The results show that this ternary system is a promising candidate for electromechanical applications with high performance and wide temperature usage range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.E. Park, T.R. Shrout, Mater. Res. Innov. 1, 20 (1997)

    Article  Google Scholar 

  2. F. Kochary, M.D. Aggarwal, A.K. Batra, R. Hawrami, D. Lianos, A. Burger, J. Mater. Sci.-Mater. Electron. 19, 1058 (2008)

    Article  Google Scholar 

  3. S.J. Zhang, F. Li, J. Appl. Phys. 111, 031301 (2012)

    Article  Google Scholar 

  4. E.W. Sun, W.W. Cao, Prog. Mater Sci. 65, 124 (2014)

    Article  Google Scholar 

  5. Y. Hosono, Y. Yamashita, H. Sakamoto, N. Ichinose, Jpn. J. Appl. Phys. 42, 535 (2003)

    Article  Google Scholar 

  6. L.H. Liu, X. Wu, S. Wang, W.N. Di, D. Lin, X.Y. Zhao, H.S. Luo, J. Cryst. Growth 318, 856 (2011)

    Article  Google Scholar 

  7. P. Finkel, H. Robinson, J. Stace, A. Amin, Appl. Phys. Lett. 97, 122903 (2010)

    Article  Google Scholar 

  8. X.Z. Liu, S.J. Zhang, J. Luo, T.R. Shrout, W.W. Cao, Appl. Phys. Lett. 96, 012907 (2010)

    Article  Google Scholar 

  9. Y. Chen, K.H. Lam, D. Zhou, W.F. Cheng, J.Y. Dai, H.S. Luo, H.L.W. Chan, Appl. Phys. A 108, 987 (2012)

    Article  Google Scholar 

  10. D.B. Lin, Z.R. Li, F. Li, S.J. Zhang, Cryst. Eng. Comm. 15, 6292 (2013)

    Article  Google Scholar 

  11. D.W. Wang, M.S. Cao, S.J. Zhang, J. Eur. Ceram. Soc. 32, 433 (2012)

    Article  Google Scholar 

  12. Z. Ren, Z.G. Ye, Ferroelectrics 464, 130 (2014)

    Article  Google Scholar 

  13. S. Wongsaenmai, X.L. Tan, S. Ananta, R. Yimnirun, J. Alloys Compd. 454, 331 (2008)

    Article  Google Scholar 

  14. S.J. Zhang, J. Luo, W. Hackenberger, N.P. Sherlock, R.J. Meyer Jr, T.R. Shrout, J. Appl. Phys. 105, 104506 (2009)

    Article  Google Scholar 

  15. X.Z. Liu, S.J. Zhang, J. Luo, T.R. Shrout, W.W. Cao, J. Appl. Phys. 106, 074112 (2009)

    Article  Google Scholar 

  16. K. Qian, B.J. Fang, Q.B. Du, J.N. Ding, X.Y. Zhao, H.S. Luo, Ferroelectrics 445, 74 (2013)

    Article  Google Scholar 

  17. X. Liu, B.J. Fang, Z.H. Chen, J.N. Ding, X.Y. Zhao, H.Q. Xu, H.S. Luo, Ferroelectrics 467, 115 (2014)

    Article  Google Scholar 

  18. P. Kumar, S. Sharma, S. Singh, O.P. Thakur, C. Prakash, T.C. Goel, Ferroelectrics 326, 55 (2005)

    Article  Google Scholar 

  19. P. Kumar, S. Sharma, O.P. Thakur, C. Prakash, T.C. Goel, Ceram. Int. 30, 585 (2004)

    Article  Google Scholar 

  20. S.T. Lau, C.H. Cheng, S.H. Choy, D.M. Lin, K.W. Kwok, H.L.W. Chan, J. Appl. Phys. 103, 104105 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program of China (973 Program) under Grant No. 2013CB632900, the National Science and Technology Support Program (Grant No. SQ2012BAJY3766), the Fundamental Research Funds for the Central Universities and Program for Innovation Research of Science in Harbin Institute of Technology (Grant No. 01508451), and the State Key Laboratory of New Ceramic and Fine Processing Tsinghua University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfei Chang or Bin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Chang, Y., Yang, B. et al. Phase transitional behavior and electrical properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary ceramics. J Mater Sci: Mater Electron 26, 1874–1880 (2015). https://doi.org/10.1007/s10854-014-2623-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2623-6

Keywords

Navigation