Skip to main content
Log in

Characterization of morphological and rheological properties of rigid magnetorheological foams via in situ fabrication method

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents material characteristics of a rigid magnetorheological (MR) foam that comprises polyurethane foam matrix and carbonyl iron particles (CIPs). Three different samples of MR foams are prepared by changing the concentration of CIPs (0, 35, and 70 g) in isotropic condition. In-depth characterization on the morphological properties, the field-dependent rheological behavior in terms of linear viscoelastic region and storage modulus, and the off-state sound absorption properties are then experimentally investigated. In the morphological observation, it is seen from the fluorescence micrographs that MR foam consists of open pore structure and the average size of the pores is decreased with the increment in CIPs content. In the rheological test of MR foam, it is identified that MR foam with the addition of 70 g of CIPs to the total of polyol and isocyanates (100 g) can enhance the storage modulus up to 112% compared with MR foam without CIPs. In the meantime, from the acoustic absorption test, it is shown that the maximum peaks of sound absorption coefficient (SAC) are shifted to the low frequency and the SAC is increased up to 229% due to the decrement in the pores size and increment in the storage modulus. The results achieved from this material characterization of MR foam provide useful guidelines for the development of new type smart materials associated with MR fluids and for the findings of appropriate applications which require controllability of both the stiffness and acoustic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Gong Q, Wu J, Gong X, Fan Y, Xia H (2013) Smart polyurethane foam with magnetic field controlled modulus and anisotropic compression property. RSC Adv 3:3241–3248

    Article  Google Scholar 

  2. Carlson JD, Jolly MR (2000) MR fuid, foam and elastomer devices. Mechatronics 10:555–569

    Article  Google Scholar 

  3. Wereley NM, Perez C, Choi YT (2018) Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams. AIP Adv 8:056721–056726

    Article  Google Scholar 

  4. Aziz SAA, Ubaidillah, Mazlan SA, Ismail NIN, Choi SB (2018) Implementation of functionalized multiwall carbon nanotubes on magnetorheological elastomer. J Mater Sci 53:10122–10134

    Article  Google Scholar 

  5. Ahamed R, Choi S, Ferdaus MM (2018) A state of art on magneto-rheological materials and their potential applications. J Intell Mate Syst Struct 29:2051–2095

    Article  Google Scholar 

  6. Blanco E, Lam S, Smoukov SK, Velikov KP, Khan SA, Velev OD (2013) Stability and viscoelasticity of magneto-pickering foams. Langmuir 29:10019–10027

    Article  Google Scholar 

  7. Lam S, Blanco E, Smoukov SK, Velikov KP, Velev OD (2011) Magnetically responsive pickering foams. J Am Chem Soc 133:13856–13859

    Article  Google Scholar 

  8. Scarpa F, Smith FC (2004) Passive and MR fluid-coated auxetic PU foam—Mechanical, acoustic, and electromagnetic properties. J Intell Mater Syst Struct 15:973–979

    Article  Google Scholar 

  9. White SW, Kim SK, Bajaj AK, Davies P, Showers DK, Liedtke PE (2000) Experimental techniques and identification of nonlinear and viscoelastic properties of flexible polyurethane foam. Nonlinear Dyn 22:281–313

    Article  Google Scholar 

  10. Scarpa F, Pastorino P, Garelli A, Patsias S, Ruzzene M (2005) Auxetic compliant flexible PU foams: static and dynamic properties. Physica Status Solidi 694:681–694

    Article  Google Scholar 

  11. Carlson JD (2000) Low cost MR fluid sponge devices. J Intell Mater Syst Struct 10:589–595

    Article  Google Scholar 

  12. Co Ting Keh LO-S, Zang J, Zhao X (2013) Magneto-rheological foams capable of tunable energy absorption. Proc IEEE 4:1–3

    Google Scholar 

  13. Ge L, Xuan S, Liao G, Yin T, Gong X (2015) Stretchable polyurethane sponge reinforced magnetorheological material with enhanced mechanical properties. Smart Mater Struct 24:037001–037009

    Article  Google Scholar 

  14. Xu Y, Gong X, Xuan S (2013) Soft magnetorheological polymer gels with controllable rheological properties. Smart Mater Struct 22:075029–075039

    Article  Google Scholar 

  15. D’Auria M, Davino D, Pantani R, Sorrentino L (2016) Polymeric foam-ferromagnet composites as smart lightweight materials. Smart Mater Struct 25:055014–055027

    Article  Google Scholar 

  16. Davino D, Mei P, Sorrentino L, Visone C (2012) Polymeric composite foams with properties controlled by the magnetic field. IEEE Trans Magn 48:3043–3046

    Article  Google Scholar 

  17. Sorrentino L, Aurilia M, Forte G, Iannace S (2011) Anisotropic mechanical behavior of magnetically oriented iron particle reinforced foams. J Appl Polym Sci 119:1239–1247

    Article  Google Scholar 

  18. Sorrentino L, D’Auria M, Davino D, Visone C, Iannace S (2014) SmartFoams with magneto-sensitive elastic behavior. Times Polym (TOP) Compos 1599:238–241

    Google Scholar 

  19. Schümann M, Seelig N, Odenbach S (2015) The effect of external magnetic fields on the pore structure of polyurethane foams loaded with magnetic microparticles. Smart Mater Struct 24:105028–105034

    Article  Google Scholar 

  20. Zhang S, Rodrigue D, Riedl B (2005) Preparation and morphology of polypropylene/wood flour composite foams via extrusion. Polym Compos 26:731–738

    Article  Google Scholar 

  21. Gong X, Xu Y, Xuan S, Guo C, Zong L (2012) The investigation on the nonlinearity of plasticine-like magnetorheological material under oscillatory shear rheometry. J Rheol 56:1375–1391

    Article  Google Scholar 

  22. Gao D, Wang J, Wang Y (2016) Effect of melt viscosity on the cell morphology and properties of poly (lactic acid) foams. J Cell Plast 52(2):175–187

    Article  Google Scholar 

  23. Yang J, Huang L, Zhang Y, Chen F, Fan P, Zhong M, Yeh S (2013) A new promising nucleating agent for polymer foaming: applications of ordered mesoporous silica particles in polymethyl methacrylate supercritical carbon dioxide microcellular foaming. IECR 52:14169–14178

    Google Scholar 

  24. Filipcsei G, Csetneki I, Szilágyi A, Zrínyi M (2007) Magnetic field-responsive smart polymer composites. Adv Polym Sci 206:137–189

    Article  Google Scholar 

  25. Agirre-Olabide I, Berasategui J, Elejabarrieta MJ, Bou-Ali MM (2014) Characterization of the linear viscoelastic region of magnetorheological elastomers. J Intell Mater Syst Struct 25:2074–2081

    Article  Google Scholar 

  26. Agirre-olabide I, Berasategui J, Elejabarrieta MJ (2014) Characterization of the linear viscoelastic region of magnetorheological elastomers 25:2074–2081

    Google Scholar 

  27. Ubaidillah, Imaduddin F, Li Y, Mazlan SA, Sutrisno J, Koga T, Yahya I, Choi SB (2016) A new class of magnetorheological elastomers based on waste tire rubber and the characterization of their properties. Smart Mater Struct 25:1–15

    Google Scholar 

  28. Ubaidillah, Sutrisno J, Purwanto A, Mazlan SA (2014) Recent progress on magnetorheological solids: materials, fabrication, testing and applications. Adv Eng Mater 17:563–597

    Article  Google Scholar 

  29. Agirre-Olabide I, Elejabarrieta MJ, Bou-Ali MM (2015) Matrix dependence of the linear viscoelastic region in magnetorheological elastomers. J Intell Mater Syst Struct 26:1880–1886

    Article  Google Scholar 

  30. Niedermeier W, Luginsland H, Fro J (2005) The effect of filler—filler and filler—elastomer interaction on rubber reinforcement. Compos A Appl Sci Manuf 36:449–460

    Article  Google Scholar 

  31. Sorrentino L, Aurilia M, Forte G, Iannace S (2008) Composite polymeric foams produced by using magnetic field. Adv Sci Technol 54:123–126

    Article  Google Scholar 

  32. Journal I, Engineering M, Doi P (2014) Acoustic performance of green polymer foam from renewable resources after UV exposure. Int J Autom Mech Eng 9:1639–1648

    Article  Google Scholar 

  33. Jorge P, Malcolm A, Croker J (2007) Recent trends in porous sound absorbing materials. J Comput Phys 226:1845–1858

    Article  Google Scholar 

  34. Navacerrada MA, Fernández P, Díaz C, Pedrero A (2013) Thermal and acoustic properties of aluminium foams manufactured by the infiltration process. Appl Acoust 74:496–501

    Article  Google Scholar 

  35. Liu Z, Zhan J, Fard M, Davy JL (2016) Acoustic properties of a porous polycarbonate material produced by additive manufacturing. Mater Lett 181:296–299

    Article  Google Scholar 

  36. Bahrambeygi H, Sabetzadeh N, Rabbi A, Nasouri K, Shoushtari AM, Babaei MR (2013) Nanofibers (PU and PAN) and nanoparticles (nanoclay and MWNTs) simultaneous effects on polyurethane foam sound absorption. J Polym Res 20:72–82

    Article  Google Scholar 

  37. Oliviero M, Verdolotti L, Stanzione M, Lavotgna M (2017) Bio-based flexible polyurethane foams derived from succinic polyol: mechanical and acoustic performance. J Appl Polym Sci 134:45113–45125

    Article  Google Scholar 

  38. Knight RD, Jones B, Field S (2007) College physics: a strategic approach. Pearson/Addison Wesley, San Francisco

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support provided by Universiti Teknologi Malaysia, UTM-TDR Grant (Vot No. 07G13), Fundamental Research Grant Scheme (FRGS) (Vot No. 5F001), and PDRU Grant (Vot No. 04E02). This work was also supported by the SHERA Project Prime Award: AID-497-A-16-00004, USAID and Universitas Sebelas Maret (UNS) through Hibah Kolaborasi Internasional 2019. Authors also thank iARG Lab. under Assoc. Prof. Iwan Yahya for the prestigious acoustic measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nur Azmah Nordin, U. Ubaidillah or Seung-Bok Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhazeli, N.S., Nordin, N.A., Mazlan, S.A. et al. Characterization of morphological and rheological properties of rigid magnetorheological foams via in situ fabrication method. J Mater Sci 54, 13821–13833 (2019). https://doi.org/10.1007/s10853-019-03842-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03842-9

Navigation