Advertisement

Journal of Materials Science

, Volume 54, Issue 21, pp 13821–13833 | Cite as

Characterization of morphological and rheological properties of rigid magnetorheological foams via in situ fabrication method

  • Noor Sahirah Muhazeli
  • Nur Azmah NordinEmail author
  • Saiful Amri Mazlan
  • Norhaniza Rizuan
  • Siti Aishah Abdul Aziz
  • Abdul Yasser Abd Fatah
  • Zawawi Ibrahim
  • U. UbaidillahEmail author
  • Seung-Bok ChoiEmail author
Polymers & biopolymers
  • 19 Downloads

Abstract

This paper presents material characteristics of a rigid magnetorheological (MR) foam that comprises polyurethane foam matrix and carbonyl iron particles (CIPs). Three different samples of MR foams are prepared by changing the concentration of CIPs (0, 35, and 70 g) in isotropic condition. In-depth characterization on the morphological properties, the field-dependent rheological behavior in terms of linear viscoelastic region and storage modulus, and the off-state sound absorption properties are then experimentally investigated. In the morphological observation, it is seen from the fluorescence micrographs that MR foam consists of open pore structure and the average size of the pores is decreased with the increment in CIPs content. In the rheological test of MR foam, it is identified that MR foam with the addition of 70 g of CIPs to the total of polyol and isocyanates (100 g) can enhance the storage modulus up to 112% compared with MR foam without CIPs. In the meantime, from the acoustic absorption test, it is shown that the maximum peaks of sound absorption coefficient (SAC) are shifted to the low frequency and the SAC is increased up to 229% due to the decrement in the pores size and increment in the storage modulus. The results achieved from this material characterization of MR foam provide useful guidelines for the development of new type smart materials associated with MR fluids and for the findings of appropriate applications which require controllability of both the stiffness and acoustic properties.

Notes

Acknowledgements

The authors acknowledge financial support provided by Universiti Teknologi Malaysia, UTM-TDR Grant (Vot No. 07G13), Fundamental Research Grant Scheme (FRGS) (Vot No. 5F001), and PDRU Grant (Vot No. 04E02). This work was also supported by the SHERA Project Prime Award: AID-497-A-16-00004, USAID and Universitas Sebelas Maret (UNS) through Hibah Kolaborasi Internasional 2019. Authors also thank iARG Lab. under Assoc. Prof. Iwan Yahya for the prestigious acoustic measurement facilities.

References

  1. 1.
    Gong Q, Wu J, Gong X, Fan Y, Xia H (2013) Smart polyurethane foam with magnetic field controlled modulus and anisotropic compression property. RSC Adv 3:3241–3248CrossRefGoogle Scholar
  2. 2.
    Carlson JD, Jolly MR (2000) MR fuid, foam and elastomer devices. Mechatronics 10:555–569CrossRefGoogle Scholar
  3. 3.
    Wereley NM, Perez C, Choi YT (2018) Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams. AIP Adv 8:056721–056726CrossRefGoogle Scholar
  4. 4.
    Aziz SAA, Ubaidillah, Mazlan SA, Ismail NIN, Choi SB (2018) Implementation of functionalized multiwall carbon nanotubes on magnetorheological elastomer. J Mater Sci 53:10122–10134CrossRefGoogle Scholar
  5. 5.
    Ahamed R, Choi S, Ferdaus MM (2018) A state of art on magneto-rheological materials and their potential applications. J Intell Mate Syst Struct 29:2051–2095CrossRefGoogle Scholar
  6. 6.
    Blanco E, Lam S, Smoukov SK, Velikov KP, Khan SA, Velev OD (2013) Stability and viscoelasticity of magneto-pickering foams. Langmuir 29:10019–10027CrossRefGoogle Scholar
  7. 7.
    Lam S, Blanco E, Smoukov SK, Velikov KP, Velev OD (2011) Magnetically responsive pickering foams. J Am Chem Soc 133:13856–13859CrossRefGoogle Scholar
  8. 8.
    Scarpa F, Smith FC (2004) Passive and MR fluid-coated auxetic PU foam—Mechanical, acoustic, and electromagnetic properties. J Intell Mater Syst Struct 15:973–979CrossRefGoogle Scholar
  9. 9.
    White SW, Kim SK, Bajaj AK, Davies P, Showers DK, Liedtke PE (2000) Experimental techniques and identification of nonlinear and viscoelastic properties of flexible polyurethane foam. Nonlinear Dyn 22:281–313CrossRefGoogle Scholar
  10. 10.
    Scarpa F, Pastorino P, Garelli A, Patsias S, Ruzzene M (2005) Auxetic compliant flexible PU foams: static and dynamic properties. Physica Status Solidi 694:681–694CrossRefGoogle Scholar
  11. 11.
    Carlson JD (2000) Low cost MR fluid sponge devices. J Intell Mater Syst Struct 10:589–595CrossRefGoogle Scholar
  12. 12.
    Co Ting Keh LO-S, Zang J, Zhao X (2013) Magneto-rheological foams capable of tunable energy absorption. Proc IEEE 4:1–3Google Scholar
  13. 13.
    Ge L, Xuan S, Liao G, Yin T, Gong X (2015) Stretchable polyurethane sponge reinforced magnetorheological material with enhanced mechanical properties. Smart Mater Struct 24:037001–037009CrossRefGoogle Scholar
  14. 14.
    Xu Y, Gong X, Xuan S (2013) Soft magnetorheological polymer gels with controllable rheological properties. Smart Mater Struct 22:075029–075039CrossRefGoogle Scholar
  15. 15.
    D’Auria M, Davino D, Pantani R, Sorrentino L (2016) Polymeric foam-ferromagnet composites as smart lightweight materials. Smart Mater Struct 25:055014–055027CrossRefGoogle Scholar
  16. 16.
    Davino D, Mei P, Sorrentino L, Visone C (2012) Polymeric composite foams with properties controlled by the magnetic field. IEEE Trans Magn 48:3043–3046CrossRefGoogle Scholar
  17. 17.
    Sorrentino L, Aurilia M, Forte G, Iannace S (2011) Anisotropic mechanical behavior of magnetically oriented iron particle reinforced foams. J Appl Polym Sci 119:1239–1247CrossRefGoogle Scholar
  18. 18.
    Sorrentino L, D’Auria M, Davino D, Visone C, Iannace S (2014) SmartFoams with magneto-sensitive elastic behavior. Times Polym (TOP) Compos 1599:238–241Google Scholar
  19. 19.
    Schümann M, Seelig N, Odenbach S (2015) The effect of external magnetic fields on the pore structure of polyurethane foams loaded with magnetic microparticles. Smart Mater Struct 24:105028–105034CrossRefGoogle Scholar
  20. 20.
    Zhang S, Rodrigue D, Riedl B (2005) Preparation and morphology of polypropylene/wood flour composite foams via extrusion. Polym Compos 26:731–738CrossRefGoogle Scholar
  21. 21.
    Gong X, Xu Y, Xuan S, Guo C, Zong L (2012) The investigation on the nonlinearity of plasticine-like magnetorheological material under oscillatory shear rheometry. J Rheol 56:1375–1391CrossRefGoogle Scholar
  22. 22.
    Gao D, Wang J, Wang Y (2016) Effect of melt viscosity on the cell morphology and properties of poly (lactic acid) foams. J Cell Plast 52(2):175–187CrossRefGoogle Scholar
  23. 23.
    Yang J, Huang L, Zhang Y, Chen F, Fan P, Zhong M, Yeh S (2013) A new promising nucleating agent for polymer foaming: applications of ordered mesoporous silica particles in polymethyl methacrylate supercritical carbon dioxide microcellular foaming. IECR 52:14169–14178Google Scholar
  24. 24.
    Filipcsei G, Csetneki I, Szilágyi A, Zrínyi M (2007) Magnetic field-responsive smart polymer composites. Adv Polym Sci 206:137–189CrossRefGoogle Scholar
  25. 25.
    Agirre-Olabide I, Berasategui J, Elejabarrieta MJ, Bou-Ali MM (2014) Characterization of the linear viscoelastic region of magnetorheological elastomers. J Intell Mater Syst Struct 25:2074–2081CrossRefGoogle Scholar
  26. 26.
    Agirre-olabide I, Berasategui J, Elejabarrieta MJ (2014) Characterization of the linear viscoelastic region of magnetorheological elastomers 25:2074–2081Google Scholar
  27. 27.
    Ubaidillah, Imaduddin F, Li Y, Mazlan SA, Sutrisno J, Koga T, Yahya I, Choi SB (2016) A new class of magnetorheological elastomers based on waste tire rubber and the characterization of their properties. Smart Mater Struct 25:1–15Google Scholar
  28. 28.
    Ubaidillah, Sutrisno J, Purwanto A, Mazlan SA (2014) Recent progress on magnetorheological solids: materials, fabrication, testing and applications. Adv Eng Mater 17:563–597CrossRefGoogle Scholar
  29. 29.
    Agirre-Olabide I, Elejabarrieta MJ, Bou-Ali MM (2015) Matrix dependence of the linear viscoelastic region in magnetorheological elastomers. J Intell Mater Syst Struct 26:1880–1886CrossRefGoogle Scholar
  30. 30.
    Niedermeier W, Luginsland H, Fro J (2005) The effect of filler—filler and filler—elastomer interaction on rubber reinforcement. Compos A Appl Sci Manuf 36:449–460CrossRefGoogle Scholar
  31. 31.
    Sorrentino L, Aurilia M, Forte G, Iannace S (2008) Composite polymeric foams produced by using magnetic field. Adv Sci Technol 54:123–126CrossRefGoogle Scholar
  32. 32.
    Journal I, Engineering M, Doi P (2014) Acoustic performance of green polymer foam from renewable resources after UV exposure. Int J Autom Mech Eng 9:1639–1648CrossRefGoogle Scholar
  33. 33.
    Jorge P, Malcolm A, Croker J (2007) Recent trends in porous sound absorbing materials. J Comput Phys 226:1845–1858CrossRefGoogle Scholar
  34. 34.
    Navacerrada MA, Fernández P, Díaz C, Pedrero A (2013) Thermal and acoustic properties of aluminium foams manufactured by the infiltration process. Appl Acoust 74:496–501CrossRefGoogle Scholar
  35. 35.
    Liu Z, Zhan J, Fard M, Davy JL (2016) Acoustic properties of a porous polycarbonate material produced by additive manufacturing. Mater Lett 181:296–299CrossRefGoogle Scholar
  36. 36.
    Bahrambeygi H, Sabetzadeh N, Rabbi A, Nasouri K, Shoushtari AM, Babaei MR (2013) Nanofibers (PU and PAN) and nanoparticles (nanoclay and MWNTs) simultaneous effects on polyurethane foam sound absorption. J Polym Res 20:72–82CrossRefGoogle Scholar
  37. 37.
    Oliviero M, Verdolotti L, Stanzione M, Lavotgna M (2017) Bio-based flexible polyurethane foams derived from succinic polyol: mechanical and acoustic performance. J Appl Polym Sci 134:45113–45125CrossRefGoogle Scholar
  38. 38.
    Knight RD, Jones B, Field S (2007) College physics: a strategic approach. Pearson/Addison Wesley, San FranciscoGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Materials and Structures (eMast) Research Laboratory, Malaysia-Japan International Institute of TechnologyUniversiti Teknologi MalaysiaKuala LumpurMalaysia
  2. 2.Razak Faculty of Technology and InformaticsUniversiti Teknologi MalaysiaKuala LumpurMalaysia
  3. 3.Research Centre of Malaysian Palm Oil Board (MPOB)KajangMalaysia
  4. 4.Mechanical Engineering Department, Faculty of EngineeringUniversitas Sebelas MaretSurakartaIndonesia
  5. 5.National Center for Sustainable Transportation Technology (NCSTT)BandungIndonesia
  6. 6.Smart Structures and System Laboratory, Department of Mechanical EngineeringInha UniversityIncheonRepublic of Korea

Personalised recommendations