Skip to main content

Advertisement

Log in

Intracellular pathway of halloysite nanotubes: potential application for antitumor drug delivery

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Natural halloysite nanotubes (HNTs), with nanotubular structure, are attracting considerable attention in recent years. The hollow tubular structure allows HNTs to play an important role in drug delivery system as drug carriers. However, the wide applications of HNTs in biomedicine have been hampered by the lack of sufficient intracellular researches so far. In this study, we systemically investigated the transport mechanisms of HNTs in A549 living cells. The colocalization and inhibition experiments illustrated FITC-labeled HNTs were readily internalized into cells by both clathrin- and caveolae-dependent endocytosis, and the transport pathway of HNTs is an actin- and microtubule-associated process via Golgi apparatus and lysosome. Meanwhile, the cell cycle assay clarified that HNTs can prompt the intracellular transportation of gemcitabine and enhance the gemcitabine concentration in A549 tumor cells. Such elucidation of intracellular transport pathway of HNTs offers insights into the site-specific delivery and cellular internalization of HNTs, which provide a reasonable guidance for the design of novel drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Shao W, Paul A, Zhao B, Lee C, Rodes L, Prakash S (2013) Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model. Biomaterials 34:10109–10119

    Article  CAS  Google Scholar 

  2. Jia N, Lian Q, Shen H, Wang C, Li C, Yang Z (2007) Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano Lett 7:2976–2980

    Article  CAS  Google Scholar 

  3. Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040

    Article  CAS  Google Scholar 

  4. Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J (2011) Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5:3679–3692

    Article  CAS  Google Scholar 

  5. Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149:65–71

    Article  CAS  Google Scholar 

  6. Newman P, Minett A, Ellis-Behnke R et al (2013) Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. Nanomed Nanotechnol 9:1139–1158

    Article  CAS  Google Scholar 

  7. Levis S, Deasy P (2002) Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm 243:125–134

    Article  CAS  Google Scholar 

  8. Santos AC, Ferreira C, Veiga F, Ribeiro AJ, Panchal A, Lvov Y, Agarwal A (2018) Halloysite clay nanotubes for life sciences applications: from drug encapsulation to bioscaffold. Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2018.05.007

    Article  Google Scholar 

  9. Remškar M (2004) Inorganic nanotubes. Adv Mater 16:1497–1504

    Article  Google Scholar 

  10. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Halloysite clay minerals—a review. Clay Miner 40:383–426

    Article  CAS  Google Scholar 

  11. Kryuchkova M, Danilushkina A, Lvov YM et al (2016) Evaluation of toxicity of nanoclays and graphene oxide in vivo: a paramecium caudatum study. Environ Sci Nano 3:442–452

    Article  CAS  Google Scholar 

  12. Lvov YM, DeVilliers MM, Fakhrullin RF (2016) The application of halloysite tubule nanoclay in drug delivery. Expert Opin Drug Deliv 13:977–986

    Article  CAS  Google Scholar 

  13. Vergaro V, Lvov YM, Leporatti S (2012) Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromol Biosci 12:1265–1271

    Article  CAS  Google Scholar 

  14. Shi YF, Tian Z, Zhang Y, Shen HB et al (2011) Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Res Lett 6:1–7

    Google Scholar 

  15. Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R et al (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromol 11:820–826

    Article  CAS  Google Scholar 

  16. Fix D, Andreeva DV, Lvov YM, Shchukin DG, Möhwald H (2009) Application of inhibitor-loaded halloysite nanot ubes in active anti-corrosive coatings. Adv Funct Mater 19:1720–1727

    Article  CAS  Google Scholar 

  17. Fakhrullina GI, Akhatova FS, Lvov YM et al (2015) Toxicity of halloysite clay nanotubes in vivo: a caenorhabditis elegans study. Environ Sci Nano 2:54–59

    Article  CAS  Google Scholar 

  18. Wu H, Shi Y, Huang C, Zhang Y, Wu J et al (2014) Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing. J Biomater Appl 28:1180–1189

    Article  Google Scholar 

  19. Dzamukova MR, Naumenko EA, Lvov YM et al (2015) Enzyme-activated intracellular drug delivery with tubule clay nanoformulation. Sci Rep UK 5:10560

    Article  CAS  Google Scholar 

  20. Massaro M, Lazzara G, Milioto S, Noto R, Riela S (2017) Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. J Mater Chem B 5(16):2867–2882

    Article  CAS  Google Scholar 

  21. Verma NK, Moore E, Blau W, Volkov Y et al (2012) Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. J Nanopart Res 14:1–11

    Article  Google Scholar 

  22. Price R, Gaber BP, Lvov YM (2011) In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. J Microencapsul 18:713–722

    Google Scholar 

  23. Abdullayev E, Price R, Shchukin D, Lvov YM (2009) Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Appl Mater Interfaces 1:1437–1443

    Article  CAS  Google Scholar 

  24. Liu P, Zhao M (2009) Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP). Appl Surf Sci 255:3989–3993

    Article  CAS  Google Scholar 

  25. Veerabadran NG, Mongayt D, Torchilin V, Price R, Lvov YM (2009) Organized shells on clay nanotubes for controlled release of macromolecules. Macromol Rapid Commun 30:99–103

    Article  CAS  Google Scholar 

  26. Serag MF, Kaji N, Venturelli E, Okamoto Y, Terasaka K et al (2011) Functional platform for controlled subcellular distribution of carbon nanotubes. ACS Nano 5:9264–9270

    Article  CAS  Google Scholar 

  27. Khandare JJ, Jalota-Badhwar A, Satavalekar SD, Bhansali SG et al (2012) PEG-conjugated highly dispersive multifunctional magnetic multi-walled carbon nanotubes for cellular imaging. Nanoscale 4:837–844

    Article  CAS  Google Scholar 

  28. Burris HA, Moore MJ, Andersen J et al (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15:2403–2413

    Article  CAS  Google Scholar 

  29. Martoni A, Marino A, Sperandi F et al (2005) Multicentre randomized phase III study comparing the same dose and schedule of cisplatin plus the same schedule of vinorelbine or gemcitabine in advanced non-small cell lung cancer. Eur J Cancer 41:81–92

    Article  CAS  Google Scholar 

  30. Yah WO, Takahara A, Lvov YM (2012) Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc 134:1853–1859

    Article  CAS  Google Scholar 

  31. Yuan P, Southon PD, Liu Z, Green ME, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751

    Article  CAS  Google Scholar 

  32. Li J, Wang R, Schweickert PG et al (2016) Plk1 Inhibition Enhances the Efficacy of Gemcitabine in Human Pancreatic Cancer. Cell Cycle 15:711–719

    Article  Google Scholar 

  33. Zeng YC, Wu R, Xiao YP et al (2015) Radiation enhancing effects of sanazole and gemcitabine in hypoxic breast and cervical cancer cells in vitro. Contemp Oncol 19:236–240

    CAS  Google Scholar 

  34. Mailander V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromol 10:2379–2400

    Article  Google Scholar 

  35. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    Article  CAS  Google Scholar 

  36. Kam NWS, Liu Z, Dai H (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 118:591–595

    Article  Google Scholar 

  37. Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2873–2896

    Article  CAS  Google Scholar 

  38. Liu SL, Zhang ZL, Tian ZQ et al (2011) Effectively and efficiently dissecting the infection of influenza virus by quantum-dot-based single-particle tracking. ACS Nano 6:141–150

    Article  CAS  Google Scholar 

  39. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  CAS  Google Scholar 

  40. Jin SE, Jin HE, Hong SS (2014) Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. Biomed Res Int 2014:814208

    Google Scholar 

  41. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–419

    Article  CAS  Google Scholar 

  42. Watari F, Takashi N, Yokoyama A et al (2009) Material nanosizing effect on living organisms: non-specific, biointeractive, physical size effects. J R Soc Interface 6:S371–S388

    Article  CAS  Google Scholar 

  43. Kryuchkova M, Danilushkina A, Lvov Y, Fakhrullin R (2016) Evaluation of toxicity of nanoclays and graphene oxide in vivo: a Paramecium caudatum study. Environ Sci Nano 3(2):442–452

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by China Scholarship Council (No.201208420587). The authors would also like to thank Prof. Daiwen Pang at Wuhan University for technical help with confocal microscopy and Dr. Matthew Glen and Dr. Lynne Waddington at CSIRO in Australia for technical assistance on SEM and TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqun Tian.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 23099 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, ZG., Liu, SL. et al. Intracellular pathway of halloysite nanotubes: potential application for antitumor drug delivery. J Mater Sci 54, 693–704 (2019). https://doi.org/10.1007/s10853-018-2775-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2775-5

Keywords

Navigation