Skip to main content

Advertisement

Log in

Fabrication of CZTSSe absorbers by optimized selenization of one-step co-electrodeposited CZTS precursors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cu2ZnSn(S,Se)4 (CZTSSe) absorber layers are fabricated by co-electrodeposited Cu–Zn–Sn–S (CZTS) precursors followed by selenization. In order to complex the Cu ions and shift its reduction potential to more negative, trisodium citrate is applied as the complexing agent during the co-electrodeposition. After the co-electrodeposition, CZTS precursors are preliminary annealed at 280 °C in order to improve the homogeneity by intermixing of the elements. The influences of selenization temperatures on the chemical compositions, crystal phases, optical properties and photovoltaic device performances are also systematically investigated by X-ray energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, UV–vis absorption spectroscopy, and JV measurements. EDS results reveal that the CZTSSe absorber layers are all in a Cu-poor and Zn-rich nature, which is beneficial for fabricating cells with high efficiency. It is found that the crystalline quality and morphology of the CZTSSe absorber can be greatly improved by post-selenization at 550 °C. Photovoltaic devices are fabricated with standard soda-lime glass (SLG)/Mo/CZTSSe/CdS/i-ZnO/ITO/Ag grid structures. Champion cell demonstrates 2.81% efficiency based on the optimized CZTSSe absorber. These results validate co-electrodeposition as a promising strategy for developing earth-abundant thin film solar cells at low-cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Miskin CK, Yang WC, Hages CJ, Carter NJ, Joglekar CS, Stach EA, Agrawal R (2015) 9.0% efficient Cu2ZnSn (S,Se)4 solar cells from selenized nanoparticle inks. Prog Photovolt Res Appl 23:654–659

    Article  Google Scholar 

  2. Chen SY, Walsh A, Gong XG, Wei SH (2013) Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2 ZnSnSe4 earth-abundant solar cell absorbers. Adv Mater 25:1522–1539

    Article  Google Scholar 

  3. Liu XL, Feng Y, Cui HT, Liu FY, Hao XJ, Conibeer G, Mitzi DB, Green M (2016) The current status and future prospects of kesterite solar cells: a brief review. Prog Photovolt Res Appl 24:879–898

    Article  Google Scholar 

  4. Kim J, Hiroi H, Todorov TK, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee YS, Wang W, Sugimoto H, Mitzi DB (2014) High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter. Adv Mater 26:7427–7431

    Article  Google Scholar 

  5. Repins I, Beall C, Vora N, Dehart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu W, Goodrich A, Noufi R (2012) Co-evaporated Cu2ZnSnSe4 films and devices. Sol Energy Mater Sol Cell 101:154–159

    Article  Google Scholar 

  6. Yang F, Ma RX, Zhao WS, Zhang XY, Li X (2016) Fabrication of Cu2ZnSnS4 (CZTS) absorber films based on different compound targets. J Alloys compd 689:849–856

    Article  Google Scholar 

  7. Agawane GL, Kamble AS, Vanalakar SA, Shin SW, Gang MG, Yun JH, Gwak J, Moholkar AV, Kim JH (2015) Fabrication of 3.01% power conversion efficient high-quality CZTS thin film solar cells by a green and simple sol–gel technique. Mater Lett 158:58–61

    Article  Google Scholar 

  8. Wang W, Shen HL, Wong LH, Yao HY, Su ZH, Li YF (2016) Preparation of high efficiency Cu2ZnSn(S,Se)4 solar cells from novel no-toxic hybrid ink. J Power Sources 335:84–90

    Article  Google Scholar 

  9. Seo SW, Jeon J, Seo JW, Yu YY, Jeong J, Lee D, Kim H, Ko MJ, Son HJ, Jang HW, Kim JY (2016) Compositional and interfacial modification of Cu2ZnSn(S,Se)4 thin-film solar cells prepared by electrochemical deposition. Chemsuschem 9:439–444

    Article  Google Scholar 

  10. Tsai HW, Chen CW, Thomas SR, Hsu CH, Tsai WC, Chen YZ, Wang YC, Wang ZM, Hong HF, Chueh YL (2016) Facile growth of Cu2ZnSnS4 thin-film by one-step pulsed hybrid electrophoretic and electroplating deposition. Sci Rep 6:19102–19108

    Article  Google Scholar 

  11. Ge J, Chu JH, Jiang JC, Yan YY, Yang PX (2015) The interfacial reaction at ITO back contact in Kesterite CZTSSe bifacial solar cells. ACS Sustain Chem Eng 3:3043–3052

    Article  Google Scholar 

  12. Vauche L, Risch L, Sánchez Y, Dimitrievska M, Pasquinelli M, Monsabert TG, Grand P, Jaime-Ferrer S, Saucedo E (2016) 8.2% pure selenide kesterite thin-film solar cells from large-area electrodeposited precursors. Prog Photovolt Res Appl 24:38–51

    Article  Google Scholar 

  13. Yao LY, Ao JP, Jeng MJ, Bi JL, Gao SS, Sun GZ, He Q, Zhou ZQ, Sun Y, Chang LB (2017) A CZTSe solar cell with 8.2% power conversion efficiency fabricated using electrodeposited Cu/Sn/Zn precursor and a three-step selenization process at low Se pressure. Sol Energy Mater Sol Cells 159:318–324

    Article  Google Scholar 

  14. Yuan TF, Li Y, Jia M, Lai YQ, Li J, Liu FY, Liu YX (2015) Fabrication of Cu2ZnSnS4 thin film solar cells by sulfurization of electrodeposited stacked binary Cu–Zn and Cu–Sn alloy layers. Mater Lett 155:44–47

    Article  Google Scholar 

  15. Tang AY, Liu JJ, Ji J, Dou ML, Li ZL, Wang F (2016) One-step electrodeposition for targeted off-stoichiometry Cu2ZnSnS4 thin films. Appl Surf Sci 383:253–260

    Article  Google Scholar 

  16. Shiyani T, Raval D, Patel M, Mukhopadhyay I, Ray A (2016) Effect of initial bath condition and post-annealing on co-electrodeposition of Cu2ZnSnS4. Mater Chem Phys 171:63–72

    Article  Google Scholar 

  17. Gurav KV, Shin SW, Patil UM, Suryawanshi MP, Pawar SM, Gang MG, Vanalkar SA, Yun JH, Kim JH (2015) Improvement in the properties of CZTSSe thin films by selenizing single-step electrodeposited CZTS thin films. J Alloys compd 631:178–182

    Article  Google Scholar 

  18. Tao JH, Liu JF, Chen LL, Cao HY, Meng XK, Zhang YB, Zhang CJ, Sun L, Yang PX, Chu JH (2016) 7.1% efficient co-electroplated Cu2ZnSnS4 thin film solar cells with sputtered CdS buffer layers. Green Chem 18:550–557

    Article  Google Scholar 

  19. Shin S, Park C, Kim C, Kim Y, Park S, Lee J (2016) Cyclic voltammetry studies of copper, tin and zinc electrodeposition in a citrate complex system for CZTS solar cell application. Curr Appl Phys 16:207–210

    Article  Google Scholar 

  20. Cheng K, Meng J, Wang XY, Huang YQ, Liu JJ, Xue M, Du ZL (2015) Low-cost Cu2ZnSnS4 thin films prepared from single step electrodeposited Cu/Zn/Sn alloy precursor films. Mater Chem Phys 163:24–29

    Article  Google Scholar 

  21. Yang KJ, Son D, Sung S, Sim J, Kim Y, Park S, Jeon D, Kim J, Hwang D, Jeon C, Nam D, Cheong H, Kang J, Kim A (2016) A band-gap-graded CZTSSe solar cell with 12.3% efficiency. J Mater Chem A 4:10151–10158

    Article  Google Scholar 

  22. Johnson M, Baryshev SV, Thimsen E, Manno M, Zhang X, Veryovkim IV, Leighton C, Aydil ES (2014) Alkali-metal-enhanced grain growth in Cu2ZnSnS4 thin films. Energy Environ Sci 7:1931–1938

    Article  Google Scholar 

  23. Hsieh Y, Han QF, Jiang CY, Song T, Chen HJ, Meng L, Zhou HP, Yang Y (2016) Efficiency enhancement of Cu2ZnSn(S,Se)4 solar cells via alkali metals doping. Adv Energy Mater 6:1502386

    Article  Google Scholar 

  24. Juskenas R, Niaura G, Mockus Z, Kanapeckaite S, Giraitis R, Kondrotas R, Naujokaitis A, Stalnionis G, Pakstas V, Karpaviciene V (2016) XRD studies of an electrochemically co-deposited Cu–Zn–Sn precursor and formation of a Cu2ZnSnSe4 absorber for thin-film solar cells. J Alloys compd 655:281–289

    Article  Google Scholar 

  25. Lee JH, Choi HJ, Kim WM, Jeong JH, Park JK (2016) Effect of pre-annealing on the phase formation and efficiency of CZTS solar cell prepared by sulfurization of Zn/(Cu, Sn) precursor with H2S gas. Sol Energy 136:499–504

    Article  Google Scholar 

  26. Pinto AH, Shin SW, Aydil ES, Penn RL (2016) Selective removal of Cu2−x(S,Se) phases from Cu2ZnSn(S,Se)4 thin films. Green Chem 18:5814–5821

    Article  Google Scholar 

  27. Just J, Sutter-Fella CM, Lutzenkirchen-Hecht D, Frahm R, Schorr S, Unold T (2016) Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films. Phys Chem Chem Phys 18:15988–15994

    Article  Google Scholar 

  28. Levcenko S, Just J, Redinger A, Larramona G, Bourdais S, Dennler G, Jacob A, Unold T (2016) Deep defects in Cu2ZnSn(S,Se)4 solar cells with varying Se content. Phys Rev Appl 5:024004

    Article  Google Scholar 

  29. Azimi H, Hou Y, Brabec CJ (2014) Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells. Energy Environ Sci 7:1829–1849

    Article  Google Scholar 

  30. Mkawi EM, Ibrahim K, Ali MKM, Farrukh MA, Mohamed AS (2014) Influence of triangle wave pulse on the properties of Cu2ZnSnS4 thin films prepared by single step electrodeposition. Sol Energy Mater Sol Cells 130:91–98

    Article  Google Scholar 

  31. Li JJ, Wang HX, Wu L, Chen C, Zhou ZQ, Liu FF, Sun Y, Han JB, Zhang Y (2016) Growth of Cu2ZnSnSe4 film under controllable Se vapor composition and impact of low Cu content on solar cell efficiency. ACS Appl Mater Interfaces 8:10283–10292

    Article  Google Scholar 

  32. Kumar M, Dubey A, Adhikari N, Venkatesan S, Qiao QQ (2015) Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS-Se solar cells. Energy Environ Sci 8:3134–3159

    Article  Google Scholar 

  33. Vanalakar SA, Mali SS, Agwane GL, Kamble A, Kim IY, Patil PS, Kim JY, Kim JH (2016) Influence of laser repetition rate on the Cu2ZnSn(SSe)4 thin films synthesized via pulsed laser deposition technique. Sol Energy Mater Sol Cells 157:331–336

    Article  Google Scholar 

  34. Fernandes PA, Salome PMP, Dacunha AF (2011) Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J Alloys compd 509:7600–7606

    Article  Google Scholar 

  35. Tai KF, Gunawan O, Kuwahara M, Chen S, Mhaisalkar SG, Huan CHA, Mitzi DB (2016) Fill factor loss in Cu2ZnSn(SxSe1−x)4 solar cells: insights from physical and electrical characterization of device and exfoliated films. Adv Energy Mater 6:1501609–1501610

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61376061, 11274093, 51572070), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (B20140004), and the program for Changjiang Scholars and Innovative Research Team in University (No. PCS IRT_15R18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuliang Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, K., Kuang, Z., Liu, J. et al. Fabrication of CZTSSe absorbers by optimized selenization of one-step co-electrodeposited CZTS precursors. J Mater Sci 52, 11014–11024 (2017). https://doi.org/10.1007/s10853-017-1279-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1279-z

Keywords

Navigation