Skip to main content
Log in

Review: recent progress in ordered macroporous electrochromic materials

  • Macroporous Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrochromic (EC) materials have the ability to change their optical properties when exposed to a low electrical voltage. They have found a wide range of applications in smart windows, low-power displays, and spacecraft thermal control. To improve the practical applicability of EC materials, rational design and exploration of their architectures play a crucial role. Among various architectures, forms of inverse opal structure including two dimensionally and three dimensionally ordered macroporous structure (2DOM and 3DOM) exhibit outstanding and specific performance. In this review, several examples of 2DOM and 3DOM EC materials with detailed preparation methods are presented, followed by a detailed discussion of various aspects in ordered macroporous structural EC films, including common features, structure transition and photonic band gap tuning. In addition, the typical five layered design for the EC material-based device is given, as the device is of the most importance in researches as well as applications. Finally, conclusions and outlook are provided at the end of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reprinted with permission from [2]. Copyright © 2016 American Chemical Society

Figure 2

Reprinted with permission from [67]. Copyright © 2013 Royal Society of Chemistry

Figure 3

Reprinted with permission from [103]. Copyright © 2005 American Chemical Society

Figure 4

Reprinted with permission from [116]. Copyright © 2016 Elsevier B.V

Figure 5

Reprinted with permission from [69]. Copyright © 2012 Elsevier B.V

Figure 6

Reprinted with permission from [61]. Copyright © 2014 Royal Society of Chemistry

Figure 7

Reprinted with permission from [86]. Copyright © 2010 Elsevier Ltd

Figure 8

Reprinted with permission from [98]. Copyright © 2009 Elsevier Ltd

Figure 9

Reprinted with permission from [101]. Copyright © 2009 Royal Society of Chemistry

Figure 10

Reprinted with permission from [93]. Copyright © 2015 Royal Society of Chemistry

Figure 11

Reprinted with permission from [90]. Copyright © 2010 Royal Society of Chemistry

Figure 12

Reprinted with permission from [105]. Copyright © 2013 Elsevier Ltd

Figure 13

Reprinted with permission from [107]. Copyright © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 14

Reprinted with permission from [95]. Copyright © 2015 Elsevier B.V

Figure 15

Reprinted with permission from [91]. Copyright © 2015 Nature Publishing Group

Figure 16

Reprinted with permission from [74]. Copyright © 2005 American Institute of Physics

Figure 17

Reprinted with permission from [68]. Copyright © 2006 COPYRIGHT SPIE–The International Society for Optical Engineering

Figure 18

Reprinted with permission from [79]. Copyright © 2011 Elsevier B.V

Similar content being viewed by others

References

  1. Mortimer RJ (2011) Electrochromic materials. Annu Rev Mater Res 41:241–268

    Article  Google Scholar 

  2. Cai G, Wang J, Lee PS (2016) Next-generation multifunctional electrochromic devices. Acc Chem Res 49(8):1469–1476

    Article  Google Scholar 

  3. Deb S, Chopoorian J (1966) Optical properties and color-center formation in thin films of molybdenum trioxide. J Appl Phys 37(13):4818–4825

    Article  Google Scholar 

  4. Deb S (1969) A novel electrophotographic system. Appl Opt 8(101):192–195

    Article  Google Scholar 

  5. Deb S (1973) Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos Mag 27(4):801–822

    Article  Google Scholar 

  6. Granqvist CG (2012) Oxide electrochromics: an introduction to devices and materials. Sol Energy Mater Sol Cells 99:1–13

    Article  Google Scholar 

  7. Granqvist CG (2000) Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells 60(3):201–262

    Article  Google Scholar 

  8. Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, Amsterdam

    Google Scholar 

  9. Granqvist CG, Avendaño E, Azens A (2003) Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films 442(1):201–211

    Article  Google Scholar 

  10. Granqvist C-G, Green S, Niklasson GA, Mlyuka NR, Von Kraemer S, Georén P (2010) Advances in chromogenic materials and devices. Thin Solid Films 518(11):3046–3053

    Article  Google Scholar 

  11. Granqvist C-G, Niklasson GA, Azens A (2007) Electrochromics: fundamentals and energy-related applications of oxide-based devices. Appl Phys A 89(1):29–35

    Article  Google Scholar 

  12. Niklasson GA, Berggren L, Larsson A-L (2004) Electrochromic tungsten oxide: the role of defects. Sol Energy Mater Sol Cells 84(1):315–328

    Article  Google Scholar 

  13. Niklasson GA, Granqvist CG (2007) Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem 17(2):127–156

    Article  Google Scholar 

  14. Lampert CM (1984) Electrochromic materials and devices for energy efficient windows. Sol Energy Mater 11(1–2):1–27

    Article  Google Scholar 

  15. Lampert CM (2004) Chromogenic smart materials. Mater Today 7(3):28–35

    Article  Google Scholar 

  16. Lampert CM (1998) Smart switchable glazing for solar energy and daylight control. Sol Energy Mater Sol Cells 52(3):207–221

    Article  Google Scholar 

  17. Monk PM, Mortimer RJ, Rosseinsky DR (2008) Electrochromism: fundamentals and applications. Wiley, New York

    Google Scholar 

  18. Monk P, Mortimer R, Rosseinsky D (2007) Electrochromism and electrochromic devices. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Mortimer RJ (1997) Electrochromic materials. Chem Soc Rev 26(3):147–156

    Article  Google Scholar 

  20. Mortimer RJ, Dyer AL, Reynolds JR (2006) Electrochromic organic and polymeric materials for display applications. Displays 27(1):2–18

    Article  Google Scholar 

  21. Mortimer RJ (1999) Organic electrochromic materials. Electrochim Acta 44(18):2971–2981

    Article  Google Scholar 

  22. Mortimer RJ, Rosseinsky DR, Monk PM (2015) Electrochromic materials and devices. Wiley, New York

    Google Scholar 

  23. Llordés A, Garcia G, Gazquez J, Milliron DJ (2013) Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500(7462):323–326

    Article  Google Scholar 

  24. Runnerstrom EL, Llordés A, Lounis SD, Milliron DJ (2014) Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem Commun 50(73):10555–10572

    Article  Google Scholar 

  25. Garcia G, Buonsanti R, Runnerstrom EL, Mendelsberg RJ, Llordes A, Anders A, Richardson TJ, Milliron DJ (2011) Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett 11(10):4415–4420

    Article  Google Scholar 

  26. Arvizu MA, Wen R-T, Primetzhofer D, Klemberg-Sapieha JE, Martinu L, Niklasson GA, Granqvist CG (2015) Galvanostatic ion detrapping rejuvenates oxide thin films. ACS Appl Mater Interfaces 7(48):26387–26390

    Article  Google Scholar 

  27. Wen R-T, Niklasson GA, Granqvist CG (2015) Sustainable rejuvenation of electrochromic WO3 films. ACS Appl Mater Interfaces 7(51):28100–28104

    Article  Google Scholar 

  28. Avendano E, Berggren L, Niklasson GA, Granqvist CG, Azens A (2006) Electrochromic materials and devices: brief survey and new data on optical absorption in tungsten oxide and nickel oxide films. Thin Solid Films 496(1):30–36

    Article  Google Scholar 

  29. Berggren L, Azens A, Niklasson GA (2001) Polaron absorption in amorphous tungsten oxide films. J Appl Phys 90(4):1860–1863

    Article  Google Scholar 

  30. Wen R-T, Granqvist CG, Niklasson GA (2015) Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nat Mater 14(10):996–1001

    Article  Google Scholar 

  31. Campet G, Morel B, Bourrel M, Chabagno J, Ferry D, Garie R, Quet C, Geoffroy C, Videau J, Portier J (1991) Electrochemistry of nickel oxide films in aqueous and Li+ containing non-aqueous solutions: an application for a new lithium-based nickel oxide electrode exhibiting electrochromism by a reversible Li+ ion insertion mechanism. Mater Sci Eng B 8(4):303–308

    Article  Google Scholar 

  32. Boschloo G, Hagfeldt A (2001) Spectroelectrochemistry of nanostructured NiO. J Phys Chem B 105(15):3039–3044

    Article  Google Scholar 

  33. Mihelčič M, Vuk AŠ, Jerman I, Orel B, Švegl F, Moulki H, Faure C, Campet G, Rougier A (2014) Comparison of electrochromic properties of Ni1−xO in lithium and lithium-free aprotic electrolytes: from Ni1−xO pigment coatings to flexible electrochromic devices. Sol Energy Mater Sol Cells 120:116–130

    Article  Google Scholar 

  34. Monk P (1998) The Viologens: Physicochemical Properties, Synthesis, and Applications of the Salts of 4,4′-bipyridine. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  35. Li M, Wei Y, Zheng J, Zhu D, Xu C (2014) Highly contrasted and stable electrochromic device based on well-matched viologen and triphenylamine. Org Electron 15(2):428–434

    Article  Google Scholar 

  36. Skotheim TA (1997) Handbook of conducting polymers. CRC Press, Boca Raton

    Google Scholar 

  37. Beaujuge PM, Reynolds JR (2010) Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev 110(1):268–320

    Article  Google Scholar 

  38. www.gentex.com

  39. www.sageglass.com

  40. Sun X, Wang J (2008) Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode. Nano Lett 8(7):1884–1889

    Article  Google Scholar 

  41. Jheong HK, Kim YJ, Pan JH, Won T-Y, Lee WI (2006) Electrochromic property of the viologen-anchored mesoporous TiO2 films. J Electroceram 17(2–4):929–932

    Article  Google Scholar 

  42. Cai G, Tu J, Zhou D, Zhang J, Wang X, Gu C (2014) Dual electrochromic film based on WO3/polyaniline core/shell nanowire array. Sol Energy Mater Sol Cells 122:51–58

    Article  Google Scholar 

  43. Zhang J, Tu J-p, Du G-H, Dong Z-m, Wu Y-s, Chang L, Xie D, G-f C, X-l W (2013) Ultra-thin WO3 nanorod embedded polyaniline composite thin film: synthesis and electrochromic characteristics. Sol Energy Mater Sol Cells 114:31–37

    Article  Google Scholar 

  44. Zhang J, Tu J-p, Zhang D, Qiao Y-q, Xia X-h, Wang X-l, Gu C-d (2011) Multicolor electrochromic polyaniline–WO3 hybrid thin films: one-pot molecular assembling synthesis. J Mater Chem 21(43):17316–17324

    Article  Google Scholar 

  45. Xia X, Chao D, Qi X, Xiong Q, Zhang Y, Tu J, Zhang H, Fan HJ (2013) Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. Nano Lett 13(9):4562–4568

    Article  Google Scholar 

  46. Wei H, Yan X, Wu S, Luo Z, Wei S, Guo Z (2012) Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: electrochromic behavior and electrochemical energy storage. J Phys Chem C 116(47):25052–25064

    Article  Google Scholar 

  47. Sonavane A, Inamdar A, Deshmukh H, Patil P (2010) Multicoloured electrochromic thin films of NiO/PANI. J Phys D Appl Phys 43(31):315102

    Article  Google Scholar 

  48. Xiong S, Phua SL, Dunn BS, Ma J, Lu X (2009) Covalently bonded polyaniline—TiO2 hybrids: a facile approach to highly stable anodic electrochromic materials with low oxidation potentials. Chem Mater 22(1):255–260

    Article  Google Scholar 

  49. Liu S, Xu L, Li F, Xu B, Sun Z (2011) Enhanced electrochromic performance of composite films by combination of polyoxometalate with poly (3,4-ethylenedioxythiophene). J Mater Chem 21(6):1946–1952

    Article  Google Scholar 

  50. Xia X, Tu J, Zhang J, Huang X, Wang X, Zhang W, Huang H (2009) Multicolor and fast electrochromism of nanoporous NiO/poly (3,4-ethylenedioxythiophene) composite thin film. Electrochem Commun 11(3):702–705

    Article  Google Scholar 

  51. Ling H, Liu L, Lee PS, Mandler D, Lu X (2015) Layer-by-layer assembly of PEDOT: PSS and WO3 nanoparticles: enhanced electrochromic coloration efficiency and mechanism studies by scanning electrochemical microscopy. Electrochim Acta 174:57–65

    Article  Google Scholar 

  52. Ma L, Li Y, Yu X, Yang Q, Noh C-H (2008) Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability. Sol Energy Mater Sol Cells 92(10):1253–1259

    Article  Google Scholar 

  53. Takagi S, Makuta S, Veamatahau A, Otsuka Y, Tachibana Y (2012) Organic/inorganic hybrid electrochromic devices based on photoelectrochemically formed polypyrrole/TiO2 nanohybrid films. J Mater Chem 22(41):22181–22189

    Google Scholar 

  54. Sonavane A, Inamdar A, Dalavi D, Deshmukh H, Patil P (2010) Simple and rapid synthesis of NiO/PPy thin films with improved electrochromic performance. Electrochim Acta 55(7):2344–2351

    Article  Google Scholar 

  55. Wei H, Yan X, Li Y, Gu H, Wu S, Ding K, Wei S, Guo Z (2012) Electrochromic poly (DNTD)/WO3 nanocomposite films via electropolymerization. J Phys Chem C 116(30):16286–16293

    Article  Google Scholar 

  56. Chen J-Z, Ko W-Y, Yen Y-C, Chen P-H, Lin K-J (2012) Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties. ACS Nano 6(8):6633–6639

    Article  Google Scholar 

  57. Wei D, Scherer MR, Bower C, Andrew P, Ryhänen T, Steiner U (2012) A nanostructured electrochromic supercapacitor. Nano Lett 12(4):1857–1862

    Article  Google Scholar 

  58. Chen Z, Xiao A, Chen Y, Zuo C, Zhou S, Li L (2013) Highly porous nickel oxide thin films prepared by a hydrothermal synthesis method for electrochromic application. J Phys Chem Solids 74(11):1522–1526

    Article  Google Scholar 

  59. Erro EM, Baruzzi AM, Iglesias RA (2014) Fast electrochromic response of ultraporous polyaniline nanofibers. Polymer 55(10):2440–2444

    Article  Google Scholar 

  60. Nasybulin E, Wei S, Cox M, Kymissis I, Levon K (2011) Morphological and spectroscopic studies of electrochemically deposited poly (3,4-ethylenedioxythiophene)(PEDOT) hole extraction layer for organic photovoltaic device (OPVd) fabrication. J Phys Chem C 115(10):4307–4314

    Article  Google Scholar 

  61. Cai G-f, Tu J-p, Zhou D, Li L, Zhang J-h, Wang X-l, Gu C-d (2014) The direct growth of a WO3 nanosheet array on a transparent conducting substrate for highly efficient electrochromic and electrocatalytic applications. CrystEngComm 16(30):6866–6872

    Article  Google Scholar 

  62. Cai G, Tu J, Zhou D, Wang X, Gu C (2014) Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Sol Energy Mater Sol Cells 124:103–110

    Article  Google Scholar 

  63. Cai G-f, Tu J-p, Zhang J, Mai Y-j, Lu Y, Gu C-d, Wang X-l (2012) An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nanoscale 4(18):5724–5730

    Article  Google Scholar 

  64. Cai G, Cui M, Kumar V, Darmawan P, Wang J, Wang X, Eh AL-S, Qian K, Lee PS (2016) Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chem Sci 7(2):1373–1382

    Article  Google Scholar 

  65. Wang JM, Sun XW, Jiao Z (2010) Application of nanostructures in electrochromic materials and devices: recent progress. Materials 3(12):5029–5053

    Article  Google Scholar 

  66. Xia Y, Kamata K, Lu Y (2004) Photonic crystals. In: Di Ventra M, Evoy S, Heflin JR Jr (eds) Introduction to nanoscale science and technology. Springer, pp 505–529

  67. Zhang H, Duan G, Liu G, Li Y, Xu X, Dai Z, Wang J, Cai W (2013) Layer-controlled synthesis of WO3 ordered nanoporous films for optimum electrochromic application. Nanoscale 5(6):2460–2468

    Article  Google Scholar 

  68. Ashrit P, Kuai S-L (2006) Fabrication of electrochromically tunable photonic crystals. In: Proceedings of SPIE. pp 632202.632201–632202.632209

  69. Yang L, Ge D, Zhao J, Ding Y, Kong X, Li Y (2012) Improved electrochromic performance of ordered macroporous tungsten oxide films for IR electrochromic device. Sol Energy Mater Sol Cells 100:251–257

    Article  Google Scholar 

  70. Qu H, Zhang H, Li N, Tong Z, Wang J, Zhao J, Li Y (2015) A rapid-response electrochromic device with significantly enhanced electrochromic performance. RSC Adv 5(1):803–806

    Article  Google Scholar 

  71. Sadakane M, Sasaki K, Kunioku H, Ohtani B, Abe R, Ueda W (2010) Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation. J Mater Chem 20(9):1811–1818

    Article  Google Scholar 

  72. Li H, Thériault J, Rousselle B, Subramanian B, Robichaud J, Djaoued Y (2014) Facile fabrication of crack-free large-area 2D WO3 inverse opal films by a ‘dynamic hard-template’strategy on ITO substrates. Chem Commun 50(17):2184–2186

    Article  Google Scholar 

  73. Chen X, Ye J, Ouyang S, Kako T, Li Z, Zou Z (2011) Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano 5(6):4310–4318

    Article  Google Scholar 

  74. Kuai S-L, Bader G, Ashrit P (2005) Tunable electrochromic photonic crystals. Appl Phys Lett 86(22):221110

    Article  Google Scholar 

  75. Yun G, Balamurugan M, Kim H-S, Ahn K-S, Kang SH (2016) Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting. J Phys Chem C 120(11):5906–5915

    Article  Google Scholar 

  76. Mandlmeier B, Szeifert JM, Fattakhova-Rohlfing D, Amenitsch H, Bein T (2011) Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal. J Am Chem Soc 133(43):17274–17282

    Article  Google Scholar 

  77. Seo YG, Woo K, Kim J, Lee H, Lee W (2011) Rapid fabrication of an inverse opal TiO2 photoelectrode for DSSC using a binary mixture of TiO2 nanoparticles and polymer microspheres. Adv Funct Mater 21(16):3094–3103

    Article  Google Scholar 

  78. Jin Hyun W, Ken Lee H, Soon O, Hess O, Choi CG, Hyuk Im S, Park OO (2011) Two-dimensional TiO2 inverse opal with a closed top surface structure for enhanced light extraction from polymer light-emitting diodes. Adv Mater 23(16):1846–1850

    Article  Google Scholar 

  79. Liu L, Karuturi SK, Su LT, Wang Q, Tok AIY (2011) Electrochromic photonic crystal displays with versatile color tunability. Electrochem Commun 13(11):1163–1165

    Article  Google Scholar 

  80. Liu L, Karuturi SK, Su LT, Tok AIY (2011) TiO2 inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications. Energy Environ Sci 4(1):209–215

    Article  Google Scholar 

  81. Patil BH, Jang K, Lee S, Kim JH, Yoon CS, Kim J, Kim DH, Ahn H (2017) Periodically ordered inverse opal TiO2/polyaniline core/shell design for electrochemical energy storage applications. J Alloy Compd 694:111–118

    Article  Google Scholar 

  82. Lee S, Lee Y, Kim DH, Moon JH (2013) Carbon-deposited TiO2 3D inverse opal photocatalysts: visible-light photocatalytic activity and enhanced activity in a viscous solution. ACS Appl Mater Interfaces 5(23):12526–12532

    Article  Google Scholar 

  83. Quan LN, Jang YH, Stoerzinger KA, May KJ, Jang YJ, Kochuveedu ST, Shao-Horn Y, Kim DH (2014) Soft-template-carbonization route to highly textured mesoporous carbon–TiO2 inverse opals for efficient photocatalytic and photoelectrochemical applications. Phys Chem Chem Phys 16(19):9023–9030

    Article  Google Scholar 

  84. Karuturi SK, Liu LJ, Su LT, Niu WB, Tok ALY (2013) Atomic layer deposition of inverse opals for solar cell applications. In: Advanced materials research, vol 789. Trans Tech Publications, pp 3–7

  85. Koussi-Daoud S, Majerus O, Schaming D, Pauporté T (2016) Electrodeposition of NiO films and inverse opal organized layers from polar aprotic solvent-based electrolyte. Electrochim Acta 219:638–646

    Article  Google Scholar 

  86. Yuan Y, Xia X, Wu J, Chen Y, Yang J, Guo S (2011) Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition. Electrochim Acta 56(3):1208–1212

    Article  Google Scholar 

  87. Armstrong E, O’Sullivan M, O’Connell J, Holmes JD, O’Dwyer C (2015) 3D vanadium oxide inverse opal growth by electrodeposition. J Electrochem Soc 162(14):D605–D612

    Article  Google Scholar 

  88. Armstrong E, Osiak M, Geaney H, Glynn C, O’Dwyer C (2014) 2D and 3D vanadium oxide inverse opals and hollow sphere arrays. CrystEngComm 16(47):10804–10815

    Article  Google Scholar 

  89. Armstrong E, McNulty D, Geaney H, O’Dwyer C (2015) Electrodeposited structurally stable V2O5 inverse opal networks as high performance thin film lithium batteries. ACS Appl Mater Interfaces 7(48):27006–27015

    Article  Google Scholar 

  90. Li L, Steiner U, Mahajan S (2010) Improved electrochromic performance in inverse opal vanadium oxide films. J Mater Chem 20(34):7131–7134

    Article  Google Scholar 

  91. Tong Z, Lv H, Zhang X, Yang H, Tian Y, Li N, Zhao J, Li Y (2015) Novel morphology changes from 3D ordered macroporous structure to V2O5 nanofiber grassland and its application in electrochromism. Sci Rep 5:16864. doi:10.1038/srep16864

    Article  Google Scholar 

  92. Tong Z, Hao J, Zhang K, Zhao J, Su B-L, Li Y (2014) Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films. J Mater Chem C 2(18):3651–3658

    Article  Google Scholar 

  93. Tong Z, Yang H, Na L, Qu H, Zhang X, Zhao J, Li Y (2015) Versatile displays based on a 3-dimensionally ordered macroporous vanadium oxide film for advanced electrochromic devices. J Mater Chem C 3(13):3159–3166

    Article  Google Scholar 

  94. Tong Z, Zhang X, Lv H, Li N, Qu H, Zhao J, Li Y, Liu XY (2015) From amorphous macroporous film to 3D crystalline nanorod architecture: a new approach to obtain high‐performance V2O5 electrochromism. Adv Mater Interfaces 2 (12):1500230. doi:10.1002/admi.201500654

    Article  Google Scholar 

  95. Tong Z, Li N, Lv H, Tian Y, Qu H, Zhang X, Zhao J, Li Y (2016) Annealing synthesis of coralline V2O5 nanorod architecture for multicolor energy-efficient electrochromic device. Sol Energy Mater Sol Cells 146:135–143

    Article  Google Scholar 

  96. Tong Z, Xu H, Liu G, Zhao J, Li Y (2016) Pseudocapacitive effect and Li+ diffusion coefficient in three-dimensionally ordered macroporous vanadium oxide for energy storage. Electrochem Commun 69:46–49

    Article  Google Scholar 

  97. Alsawafta M, Almoabadi A, Badilescu S, Truong V-V (2015) Improved electrochromic properties of vanadium pentoxide nanorods prepared by thermal treatment of sol–gel dip-coated thin films. J Electrochem Soc 162(7):H466–H472

    Article  Google Scholar 

  98. Xia X, Tu J, Zhang J, Huang X, Wang X, Zhao X (2010) Improved electrochromic performance of hierarchically porous Co3O4 array film through self-assembled colloidal crystal template. Electrochim Acta 55(3):989–994

    Article  Google Scholar 

  99. Xia X, Tu J, Zhang J, Xiang J, Wang X, Zhao X (2009) Cobalt oxide ordered bowl-like array films prepared by electrodeposition through monolayer polystyrene sphere template and electrochromic properties. ACS Appl Mater Interfaces 2(1):186–192

    Article  Google Scholar 

  100. Hu W, Zhou P, Xu S, Chen S, Xia Q (2015) Template synthesis of 3-DOM IrO2 powder catalysts: temperature-dependent pore structure and electrocatalytic performance. J Mater Sci 50(7):2984–2992. doi:10.1007/s10853-015-8863-x

    Article  Google Scholar 

  101. Hu J, Abdelsalam M, Bartlett P, Cole R, Sugawara Y, Baumberg J, Mahajan S, Denuault G (2009) Electrodeposition of highly ordered macroporous iridium oxide through self-assembled colloidal templates. J Mater Chem 19(23):3855–3858

    Article  Google Scholar 

  102. Yang LY, Liau WB (2007) Chemical synthesis of polyaniline inverse opals by templating colloidal crystals in the presence of dodecylbenzenesulfonic acid. Macromol Chem Phys 208(9):994–1001

    Article  Google Scholar 

  103. Tian S, Wang J, Jonas U, Knoll W (2005) Inverse opals of polyaniline and its copolymers prepared by electrochemical techniques. Chem Mater 17(23):5726–5730

    Article  Google Scholar 

  104. Wang D, Caruso F (2001) Fabrication of polyaniline inverse opals via templating ordered colloidal assemblies. Adv Mater 13(5):350–354

    Article  Google Scholar 

  105. Ge D, Yang L, Tong Z, Ding Y, Xin W, Zhao J, Li Y (2013) Ion diffusion and optical switching performance of 3D ordered nanostructured polyaniline films for advanced electrochemical/electrochromic devices. Electrochim Acta 104:191–197

    Article  Google Scholar 

  106. Carstens T, Prowald A, El Abedin SZ, Endres F (2012) Electrochemical synthesis of PEDOT and PPP macroporous films and nanowire architectures from ionic liquids. J Solid State Electrochem 16(11):3479–3485

    Article  Google Scholar 

  107. Zhang H, Qu H, Lv H, Hou S, Zhang K, Zhao J, Li X, Frank E, Li Y (2016) Improved electrochromic performance of poly (3,4-ethylenedioxythiophene) by incorporating a three-dimensionally ordered macroporous structure. Chem Asian J 11(20):2882–2888

    Article  Google Scholar 

  108. Yu A, Meiser F, Cassagneau T, Caruso F (2004) Fabrication of polymer-nanoparticle composite inverse opals by a one-step electrochemical co-deposition process. Nano Lett 4(1):177–181

    Article  Google Scholar 

  109. von Freymann G, Kitaev V, Lotsch BV, Ozin GA (2013) Bottom-up assembly of photonic crystals. Chem Soc Rev 42(7):2528–2554

    Article  Google Scholar 

  110. Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386(6621):143–149

    Article  Google Scholar 

  111. Ozin GA, Arsenault AC, Cademartiri L (2009) In: Nanochemistry: a chemical approach to nanomaterials. Royal Society of Chemistry, London

    Google Scholar 

  112. Galisteo-López JF, Ibisate M, Sapienza R, Froufe-Pérez LS, Blanco Á, López C (2011) Self-assembled photonic structures. Adv Mater 23(1):30–69

    Article  Google Scholar 

  113. Li F, Josephson DP, Stein A (2011) Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew Chem Int Ed 50(2):360–388

    Article  Google Scholar 

  114. Li Z, Wang J, Song Y (2011) Self-assembly of latex particles for colloidal crystals. Particuology 9(6):559–565

    Article  Google Scholar 

  115. Zhang J, Li Y, Zhang X, Yang B (2010) Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays. Adv Mater 22(38):4249–4269

    Article  Google Scholar 

  116. Gao W, Rigout M, Owens H (2016) Self-assembly of silica colloidal crystal thin films with tuneable structural colours over a wide visible spectrum. Appl Surf Sci 380:12–15

    Article  Google Scholar 

  117. Thomas CA (2002) Donor–acceptor methods for band gap reduction in conjugated polymers: the role of electron rich donor heterocycles. University of Florida

  118. Sapp SA, Sotzing GA, Reynolds JR (1998) High contrast ratio and fast-switching dual polymer electrochromic devices. Chem Mater 10(8):2101–2108

    Article  Google Scholar 

Download references

Acknowledgements

We thank National Natural Science Foundation of China (Nos. 51572058, 51174063, 51502057), the Natural Science Foundation of Heilongjiang Province (E201436), the International Science and Technology Cooperation Program of China (2013DFR10630, 2015DFE52770), Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20132302110031) and the Fundamental Research Funds for the Central Universities (No. HIT.MKSTISP.201628).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiupeng Zhao or Yao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, H., Zhang, H., Zhang, X. et al. Review: recent progress in ordered macroporous electrochromic materials. J Mater Sci 52, 11251–11268 (2017). https://doi.org/10.1007/s10853-017-1077-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1077-7

Keywords

Navigation