Skip to main content
Log in

On the anisotropic and negative thermal expansion from dual-material re-entrant-type cellular metamaterials

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Negative thermal expansion (NTE) and negative Poisson’s ratio (NPR) are counterintuitive material properties that have gained popularity as the focus of many recent works. However, most of the structures previously studied only exhibit NTE or NPR exclusively. One important structure that has already been shown to exhibit NPR is the re-entrant triangle. In this work, the property of NTE in re-entrant triangular cellular structure composed of welded/bonded/brazed ribs of two different materials is investigated via analytical and finite element (FE) modelling. Based on analytical and FE analysis, the geometrical and material parameters for attaining NTE in the re-entrant metamaterial are established. The analysis and simulations reveal the dependence of NTE on the inclination of the longer chevron strut, the dimensionless rod coefficient of thermal expansion (CTE), the ratio of thermal expansion coefficients of constituent struts but independent of scale and temperature. The extent of this property becomes more negative for higher values of the angle of the longer chevron strut with the vertical, higher ratios of CTE of the base to chevron strut material and for lower values of the non-dimensional re-entrant base material thermal expansion coefficient. The anisotropic and NTE behaviour is stretch-dominated. Effectively, combined with previous knowledge of NPR in the re-entrant triangle, NTE leads to further significance of such structures for many thermal and mechanical applications, such as composite materials, sensors and electronic components industries in both thermal and mechanical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Abbreviations

NTE:

Negative thermal expansion

CTE:

Coefficient of thermal expansion

NPR:

Negative Poisson's ratio

a :

Unit cell height

b :

Unit cell width

h :

Height of internal re-entrant ribs

\( \frac{a}{b} \) :

Unit cell aspect ratio

θ 1 :

Inclination of re-entrant base struts with vertical

θ 2 :

Inclination of longer chevron struts with vertical

α n ; n = {1, 2}:

CTE of material n

α X :

Cell CTE along the X-axis

α Y :

Cell CTE along the Y-axis

\( \frac{{E_{1} }}{{E_{2} }} \) :

Cell stiffness ratio

E n ; n = {1, 2}:

Young’s modulus of material n

ΔT :

Change in temperature

Δa :

Change in unit cell height

Δb :

Change in unit cell width

References

  1. Khosrovani N, Sleight AW (1999) Strong anisotropic thermal expansion in oxides. Int J Inorg Mater 1(1):3–10

    Article  Google Scholar 

  2. Lind C (2012) Two decades of negative thermal expansion research: Where do we stand? Materials 5(6):1125–1154

    Article  Google Scholar 

  3. Wang L et al (2015) Metal fluorides, a new family of negative thermal expansion materials. J Materiomics 1(2):106–112

    Article  Google Scholar 

  4. Takenaka K (2012) Negative thermal expansion materials: technological key for control of thermal expansion. Sci Technol Adv Mater 13(1). doi:10.1088/1468-6996/13/1/013001

  5. Krokidas PG, Nikolakis V, Burganos VN (2012) Heating and sorption effects on silicalite-1 unit cell size and geometry. Microporous Mesoporous Mater 155:65–70

    Article  Google Scholar 

  6. Tao JZ, Sleight AW (2003) The role of rigid unit modes in negative thermal expansion. J Solid State Chem 173(2):442–448

    Article  Google Scholar 

  7. Sleight AW (1998) Isotropic negative thermal expansion. Annu Rev Mater Sci 28(1):29–43

    Article  Google Scholar 

  8. Barrera GD et al (2005) Negative thermal expansion. J Phys Condens Matter 17:R217–R52

    Article  Google Scholar 

  9. Miller W et al (2009) Negative thermal expansion: a review. J Mater Sci 44(20):5441–5451. doi:10.1007/s10853-009-3692-4

    Article  Google Scholar 

  10. Pryde AKA et al (1997) Rigid unit modes and the negative thermal expansion in ZrW2O8. Phase Transit 61(1–4):141–153

    Article  Google Scholar 

  11. Bieniok A, Hammonds KD (1998) Rigid unit modes and the phase transition and structural distortions of zeolite rho. Microporous Mesoporous Mater 25(1–3):193–200

    Article  Google Scholar 

  12. Heine V, Welche PRL, Dove MT (1999) Geometrical origin and theory of negative thermal expansion in framework structures. J Am Ceram Soc 82(7):1793–1802

    Article  Google Scholar 

  13. Grima JN et al (2015) Maximizing negative thermal expansion via rigid unit modes: a geometry-based approach. Proc R Soc A 471(2179). doi:10.1098/rspa.2015.0188

  14. Wang L et al (2014) Negative thermal expansion in TiF3 from the first-principles prediction. Phys Lett A 378(38–39):2906–2909

    Article  Google Scholar 

  15. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  Google Scholar 

  16. Vandeperre L, Howlett A, Clegg WJ (2002) Application of negative thermal expansion to optical fibers. In: CIMTEC 2002: international conferences on modern materials and technologies, 2002, Florence

  17. Vandeperre LJ, Clegg WJ (2003) Tailoring strains through microstructural design. In: 2003 MRS proceedings, vol 785

  18. Lakes R (2007) Cellular solids with tunable positive or negative thermal expansion of unbounded magnitude. Appl Phys Lett 90:221905-1–221905-3

    Article  Google Scholar 

  19. Saxena KK, Das R, Calius EP (2016) Three decades of auxetics research—materials with negative Poisson’s ratio: a review. Adv Eng Mater. doi:10.1002/adem.201600053

    Google Scholar 

  20. Grima JN, Zammit V, Gatt R (2006) Negative thermal expansion. Xjenza 11:17–29

    Google Scholar 

  21. Grima JN et al (2007) A system with adjustable positive or negative thermal expansion. Proc R Soc Lond A 463(2082):1585–1596

    Article  Google Scholar 

  22. Grima JN et al (2007) Connected triangles exhibiting negative Poisson’s ratios and negative thermal expansion. J Phys Soc Jpn 76(2):025001

    Article  Google Scholar 

  23. Lim T-C (2012) Negative thermal expansion structures constructed from positive thermal expansion trusses. J Mater Sci 47(1):368–373. doi:10.1007/s10853-011-5806-z

    Article  Google Scholar 

  24. Lim TC (2013) Negative thermal expansion in transversely isotropic space frame trusses. Phys Status Solidi B 250(10):2062–2069

    Google Scholar 

  25. Wei K et al (2016) Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit. J Mech Phys Solids 86:173–191

    Article  Google Scholar 

  26. Ha CS et al (2015) Controllable thermal expansion of large magnitude in chiral negative Poisson’s ratio lattices. Phys Status Solidi B 252(7):1431–1434

    Article  Google Scholar 

  27. Wu L, Li B, Zhou J (2015) Isotropic negative thermal expansion metamaterials. arXiv:1509.07889. Accessed 25 Oct 2016

  28. Lim TC (2005) Anisotropic and negative thermal expansion behavior in a cellular microstructure. J Mater Sci 40(12):3275–3277. doi:10.1007/s10853-005-2700-6

    Article  Google Scholar 

  29. Larsen UD, Sigmund O, Bouwstra S (1996) Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. In: Micro electro mechanical systems, 1996, MEMS’96, proceedings. An investigation of micro structures, sensors, actuators, machines and systems. The ninth annual international workshop. IEEE, New York

  30. Sigmund O, Torquato S (1996) Composites with extremal thermal expansion coefficients. Appl Phys Lett 69:3203–3205

    Article  Google Scholar 

  31. Collins EG, Richter S (1995) Linear-quadratic-Gaussian-based controller design for Hubble Space Telescope. J Guid Control Dyn 18(2):208–213

    Article  Google Scholar 

  32. Chen J et al (2013) Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi, La)FeO3 over a giant range. Sci Rep 3:2458. doi:10.1038/srep02458

    Google Scholar 

  33. Shen X et al (2013) Large negative thermal expansion of a polymer driven by a submolecular conformational change. Nat Chem 5:1035–1041

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Kumar Saxena.

Ethics declarations

Conflicts of Interest

The authors hereby declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, C.K., Saxena, K.K., Das, R. et al. On the anisotropic and negative thermal expansion from dual-material re-entrant-type cellular metamaterials. J Mater Sci 52, 899–912 (2017). https://doi.org/10.1007/s10853-016-0385-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0385-7

Keywords

Navigation