Advertisement

Journal of Materials Science

, Volume 44, Issue 13, pp 3370–3375 | Cite as

Effect of etch-treatment upon the intensity and peak position of photoluminescence spectra for anodic alumina films with ordered nanopore array

  • Yi-Fan Liu
  • Ya-Fang Tu
  • Sheng-You Huang
  • Jian-Ping Sang
  • Xian-Wu Zou
Article

Abstract

Porous anodic alumina membranes (AAMs) were prepared in oxalic acid and then carried on an etch-treatment in phosphoric acid. Using the etch-treatment the photoluminescence (PL) intensity of AAMs increases by a factor of 1/3. The effect of etch-treatment upon the intensity and peak position of photoluminescence (PL) spectra was investigated. It was found that the intensity of the photoluminescence (PL) spectra increased with the etching time increasing. A PL spectrum can be divided into two subbands with the peak at 434 and 460 nm, respectively. As the etching time prolongs, the intensity of the peak of 434 nm subband increases and that of the 460 nm subband rises firstly and then decreases. It can be explained by that two luminescence centers (F and F+ centers) coexist in AAMs. F centers are concentrated in the surface layer and F+ centers are enriched in the depth of pore wall. The increment of the PL intensity comes from the contribution of F+ photoluminescence centers concentrated in the depth of pore wall in AAMs. This work will be beneficial to improving the photoluminescence intensity and understanding the light-emitting mechanisms for related materials.

Keywords

Electron Paramagnetic Resonance Oxalic Acid Pore Wall Luminescence Center Porous Alumina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by FANEDD of China No.200525, Natural Science Foundation of Hubei Province No. 2005ABA027 and Science & Technology Program of Wuhan City.

References

  1. 1.
    Masuda H, Fukuda K (1995) Science 268:1466PubMedCrossRefADSGoogle Scholar
  2. 2.
    Furneaux RC, Rigby WR, Davidson AP (1989) Nature 337:147CrossRefADSGoogle Scholar
  3. 3.
    Li AP, Müller F, Birner A, Nielsch K, Gösele U (1998) J Appl Phys 84:6023CrossRefADSGoogle Scholar
  4. 4.
    Masuda H, Satoh M (1996) Jpn J Appl Phys Part 2 35:L126CrossRefGoogle Scholar
  5. 5.
    Routkevicth D, Bigioni T, Xu JM, Moskovits M (1996) J Phys Chem 100:14037CrossRefGoogle Scholar
  6. 6.
    Li Y, Zhang LD, Phillipp F, Meng GW (2000) Appl Phys Lett 76:2011CrossRefADSGoogle Scholar
  7. 7.
    Johansson A, Lu J, Carlsson J-O, Boman M (2004) J Appl Phys 96:5189CrossRefADSGoogle Scholar
  8. 8.
    Sauer G, Brehm G, Schneider S, Nielsch K, Wehrspohn RB, Choi J, Hofmeister H, Gösele U (2002) J Appl Phys 91:3243CrossRefADSGoogle Scholar
  9. 9.
    Zhang Z, Sun X, Dresselhaus MS, Ying JY, Heremans JP (1998) Appl Phys Lett 73:1589CrossRefADSGoogle Scholar
  10. 10.
    Sung SL, Tsai SH, Tseng CH, Chiang FK, Liu XW, Shih HC (1999) Appl Phys Lett 74:197CrossRefADSGoogle Scholar
  11. 11.
    Yamamoto Y, Baba N, Tajima S (1981) Nature 289:572CrossRefADSGoogle Scholar
  12. 12.
    Li GH, Zhang Y, Wu YC, Zhang LD (2003) J Phys Condens Matter 15:8663CrossRefADSGoogle Scholar
  13. 13.
    Du Y, Cai WL, Mo CM, Chen J, Zhang LD, Zhu XG (1999) Appl Phys Lett 74:2951CrossRefADSGoogle Scholar
  14. 14.
    Li Z, Huang K (2007) J Phys Condens Matter 19:216203CrossRefADSGoogle Scholar
  15. 15.
    Li YB, Zheng MJ, Ma L (2007) Appl Phys Lett 91:073109CrossRefADSGoogle Scholar
  16. 16.
    Huang GS, Wu XL, Siu GG, Chu PK (2006) Solid State Commun 137:621CrossRefADSGoogle Scholar
  17. 17.
    Huang GS, Wu XL, Mei YF, Shao XF, Siu GG (2003) J Appl Phys 93:582CrossRefADSGoogle Scholar
  18. 18.
    Green S, Badan JA, Gillesl M, Cortes A, Riveros G, Ramirez D, Gómez H, Quagliata E, Dalchiele EA, Maeotti RE (2007) Phys Stat Sol C 4:618CrossRefGoogle Scholar
  19. 19.
    Balko BA, Richmond GL (1993) J Phys Chem 97:9002CrossRefGoogle Scholar
  20. 20.
    Krawczyk SK, Garrigues M, Bouredoucen H (1986) J Appl Phys 60:392CrossRefADSGoogle Scholar
  21. 21.
    Garcia N, Ponizowskaya EV, Zhu HAO, Xiao JOHNQ, Pons A (2003) Appl Phys Lett 82:3147CrossRefADSGoogle Scholar
  22. 22.
    Thompson DW, Snyder PG, Castro L, Yan LI, Kaipa P, Woollam JA (2005) J Appl Phys 97:113511CrossRefADSGoogle Scholar
  23. 23.
    Chang RR, Iyer R, Lile DL (1987) J Appl Phys 61:1995CrossRefADSGoogle Scholar
  24. 24.
    Imothy T, Gfroer H (2000) Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd, Chichester, p 9209Google Scholar
  25. 25.
    Chen W, Tang HG, Shi CS, Dang J, Shi JY, Zhou YX, Xia SD, Wang YX, Yin ST (1995) Appl Phys Lett 67:317CrossRefADSGoogle Scholar
  26. 26.
    Draege BG, Summers GP (1979) Phys Rev B 19:1172CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yi-Fan Liu
    • 1
  • Ya-Fang Tu
    • 1
  • Sheng-You Huang
    • 1
  • Jian-Ping Sang
    • 1
    • 2
  • Xian-Wu Zou
    • 1
  1. 1.Department of PhysicsWuhan UniversityWuhanChina
  2. 2.Department of PhysicsJianghan UniversityWuhanChina

Personalised recommendations