Skip to main content
Log in

Gaussian Process Model Predictive Control of an Unmanned Quadrotor

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The Model Predictive Control (MPC) trajectory tracking problem of an unmanned quadrotor with input and output constraints is addressed. In this article, the dynamic models of the quadrotor are obtained purely from operational data in the form of probabilistic Gaussian Process (GP) models. This is different from conventional models obtained through Newtonian analysis. A hierarchical control scheme is used to handle the trajectory tracking problem with the translational subsystem in the outer loop and the rotational subsystem in the inner loop. Constrained GP based MPC are formulated separately for both subsystems. The resulting MPC problems are typically nonlinear and non-convex. We derived a GP based local dynamical model that allows these optimization problems to be relaxed to convex ones which can be efficiently solved with a simple active-set algorithm. The performance of the proposed approach is compared with an existing unconstrained Nonlinear Model Predictive Control (NMPC) algorithm and an existing constrained nonlinear GP based MPC algorithm. In the first comparison, simulation results show that the two approaches exhibit similar trajectory tracking performance. However, our approach has the advantage of incorporating constraints on the control inputs. In the second comparison, simulation results demonstrate that our approach only requires 20% of the computational time for the existing nonlinear GP based MPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdolhosseini, M., Zhang, Y., Rabbath, C. A.: An efficient model predictive control scheme for an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 70(1-4), 27–38 (2013)

    Article  Google Scholar 

  2. Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control. Eng. Pract. 19(10), 1195–1207 (2011)

    Article  Google Scholar 

  3. Berkenkamp, F., Schoellig, A. P.: Learning-based robust control: Guaranteeing stability while improving performance. In: IEEE/RSJ Proceedings of International Conference on Intelligent Robots and Systems (IROS) (2014)

  4. Bouabdallah, S., Noth, A., Siegwart, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. In: IEEE/RSJ Proceedings of International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2451–2456. IEEE (2004)

  5. Candela, J. Q., Girard, A., Larsen, J., Rasmussen, C. E.: Propagation of uncertainty in bayesian kernel models-application to multiple-step ahead forecasting. In: IEEE Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, pp. II–701. IEEE (2003)

  6. Cao, G., Lai, E. M. K., Alam, F.: Gaussian process based model predictive control for linear time varying systems. In: International Workshop on Advanced Motion Control (AMC Workshop). IEEE (2016)

  7. Cao, G., Lai, E.M.K., Alam, F.: Gaussian process model predictive control of unknown nonlinear systems. IET Control Theory & Applications. arXiv:1612.01211. Accepted for publication (2016)

  8. Cao, G., Lai, E. M. K., Alam, F.: Gaussian process model predictive control of unmanned quadrotors. In: International Conference on Control, Automation and Robotics (ICCAR). IEEE (2016)

  9. Deisenroth, M. P.: Efficient reinforcement learning using Gaussian processes. Ph.D. thesis, Karlsruhe Institute of Technology (2010)

  10. Diehl, M., Ferreau, H. J., Haverbeke, N.: Efficient numerical methods for nonlinear MPC and moving horizon estimation International Workshop on Assessment and Future Directions on Nonlinear Model Predictive Control, pp 391–417. Springer, Pavia (2008)

    Google Scholar 

  11. Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Netw. 21(1), 50–66 (2010)

    Article  Google Scholar 

  12. Doherty, P., Rudol, P.: A UAV search and rescue scenario with human body detection and geolocalization. In: Advances in Artificial Intelligence, pp. 1–13. Springer (2007)

  13. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley-Interscience Publication (1987)

  14. Girard, A., Rasmussen, C. E., Candela, J. Q., Murray-Smith, R.: Gaussian process priors with uncertain input – Application to multiple-step ahead time series forecasting. In: Advances in Neural Information Processing Systems (NIPS), pp. 545–552. MIT (2003)

  15. Grancharova, A., Johansen, T. A., Tøndel, P.: Computational aspects of approximate explicit nonlinear model predictive control. In: Proceedings of the International Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control, pp. 181–192. Springer (2007)

  16. Grancharova, A., Kocijan, J., Johansen, T. A.: Explicit stochastic predictive control of combustion plants based on Gau- ssian process models. Automatica 44(6), 1621–1631 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grüne, L., Pannek, J.: Nonlinear Model Predictive Control–Theory and Algorithms. Springer-Verlag, London (2011)

    Book  MATH  Google Scholar 

  18. Han, F., Feng, G., Wang, Y., Zhou, F.: Fuzzy modeling and control for a nonlinear quadrotor under network environment. In: IEEE 4th Annual International Conference on Cyber Technology in Automation Control, and Intelligent Systems (CYBER), pp. 395–400. IEEE (2014)

  19. Hemakumara, P., Sukkarieh, S.: Non-parametric UAV system identification with dependent Gaussian processes. In: IEEE Proceedings of International Conference on Robotics and Automation (ICRA), pp. 4435–4441. IEEE (2011)

  20. Hemakumara, P., Sukkarieh, S.: UAV parameter estimation with multi-output local and global Gaussian process approximations. In: IEEE Proceedings of International Conference on Robotics and Automation (ICRA), pp. 5402–5408. IEEE (2013)

  21. Huang, M., Xian, B., Diao, C., Yang, K., Feng, Y.: Adaptive tracking control of underactuated quadrotor unmanned aerial vehicles via backstepping. In: American Control Conference, pp. 2076–2081. IEEE (2010)

  22. Klenske, E. D., Zeilinger, M. N., Scholkopf, B., Hennig, P.: Gaussian process-based predictive control for periodic error correction. IEEE Trans. Control Syst. Technol. (2015)

  23. Kocijan, J., Murray-Smith, R.: Murray-Smith nonlinear predictive control with a Gaussian process model. In: In, R., Shorten, R. (eds.) Switching and Learning in Feedback Systems, pp 185–200. Springer, Heidelberger, Berlin, Germany (2005)

    Chapter  Google Scholar 

  24. Kocijan, J., Murray-Smith, R., Rasmussen, C. E., Girard, A.: Gaussian process model based predictive control. In: American Control Conference, vol. 3, pp. 2214–2219. IEEE (2004)

  25. Kocijan, J., Murray-Smith, R., Rasmussen, C. E., Likar, B.: Predictive control with Gaussian process models Proceedings of IEEE Region 8 EUROCON 2003: Computer as a Tool, vol. A, pp 352–356. IEEE, Ljubljana (2003)

  26. Likar, B., Kocijan, J.: Predictive control of a gas–liquid separation plant based on a Gaussian process model. Comput. Chem. Eng. 31(3), 142–152 (2007)

    Article  Google Scholar 

  27. Liuzzi, G., Lucidi, S., Sciandrone, M.: Sequential penalty derivative-free methods for nonlinear constrained optimization. SIAM J. Optim. 20(5), 2614–2635 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lucidi, S., Sciandrone, M., Tseng, P.: Objective-derivative-free methods for constrained optimization. Math. Program. 92(1), 37–59 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Madani, T., Benallegue, A.: Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles. In: American Control Conference, pp. 5887–5892. IEEE (2007)

  30. Mesbah, A.: Stochastic model predictive control: An overview and perspectives for future research. IEEE Control Systems Magazine. Accepted (2016)

  31. Metni, N., Hamel, T.: A UAV for bridge inspection: Visual servoing control law with orientation limits. Autom. Construct. 17(1), 3–10 (2007)

    Article  Google Scholar 

  32. Pan, Y., Theodorou, E.: Probabilistic differential dynamic programming. In: Advances in Neural Information Processing Systems (NIPS), pp. 1907–1915 (2014)

  33. Quiñonero-Candela, J., Rasmussen, C. E.: A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Raffo, G. V., Ortega, M. G., Rubio, F. R.: An integral predictive/nonlinear H\(\infty \) control structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  36. Valipour, M.: Application of new mass transfer formulae for computation of evapotranspiration. J. Appl. Water Eng. Res. 2(1), 33–46 (2014)

    Article  MathSciNet  Google Scholar 

  37. Valipour, M.: How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? Agriculture 6(4), 53 (2016)

    Article  Google Scholar 

  38. Valipour, M.: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorol. Appl. 23(1), 91–100 (2016)

    Article  Google Scholar 

  39. Valipour, M.: Variations of land use and irrigation for next decades under different scenarios. IRRIGA: Braz. J. Irrig. Drain. 1(01), 262–288 (2016)

    Article  Google Scholar 

  40. Valipour, M., Sefidkouhi, M. A. G., Raeini, M., et al.: Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agric. Water Manag. 180, 50–60 (2017)

    Article  Google Scholar 

  41. Voos, H.: Nonlinear and neural network-based control of a small four-rotor aerial robot. In: 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1–6. IEEE (2007)

  42. Wang, Y., Boyd, S.: Fast model predictive control using online optimization. IEEE Trans. Control Syst. Technol. 18(2), 267–278 (2010)

    Article  Google Scholar 

  43. Yannopoulos, S. I., Lyberatos, G., Theodossiou, N., Li, W., Valipour, M., Tamburrino, A., Angelakis, A. N.: Evolution of water lifting devices (pumps) over the centuries worldwide. Water 7(9), 5031–5060 (2015)

    Article  Google Scholar 

  44. Yiqing, L., Xigang, Y., Yongjian, L.: An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints. Comput. Chem. Eng. 31(3), 153–162 (2007)

    Article  Google Scholar 

  45. Zuo, Z.: Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory Appl. 4(11), 2343–2355 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Lai, E.MK. & Alam, F. Gaussian Process Model Predictive Control of an Unmanned Quadrotor. J Intell Robot Syst 88, 147–162 (2017). https://doi.org/10.1007/s10846-017-0549-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0549-y

Keywords

Navigation