Journal of Intelligent & Robotic Systems

, Volume 85, Issue 3–4, pp 539–552 | Cite as

Set-point Control of Mobile Robot with Obstacle Detection and Avoidance Using Navigation Function - Experimental Verification

  • Wojciech Kowalczyk
  • Mateusz Przybyla
  • Krzysztof Kozlowski
Open Access


This paper presents the results of an experimental verification of mobile robot control algorithm including obstacle detection and avoidance. The controller is based on the navigation potential function that was proposed in work (Urakubo, Nonlinear Dyn. 81(3), 1475–1487 2015). Conducted experiments considered the task of reaching and stabilization of robot in point. The navigation potential agregates information of robot position and orientation but also the repelling potentials of obstacles. The obstacle detection is performed solely with the use of laser scanner. The experiments show that the method can easily handle environments with one or two obstacles even if they instantly hide or show-up due to the scanner range limits. The experiments also indicate that the utilized control method has a good potential for being used in parallel parking task.


Mobile robot control Navigation function Set point control Obstacle avoidance 


  1. 1.
    Dimarogonasa, D.V., Loizoua, S.G., Kyriakopoulos, K.J., Zavlanosb, M.M.: A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica 42(2), 229–243 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. In: The Canadian Cartographer, pp. 112–122 (1973)Google Scholar
  3. 3.
    Filippidis, I., Kyriakopoulos, K.J.: Adjustable navigation functions for unknown sphere worlds. In: IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 4276–4281 (2011)Google Scholar
  4. 4.
    Kasa, I.: A circle fitting procedure and its error analysis. IEEE Trans. Instrumen. Measur., 8–14 (1976)Google Scholar
  5. 5.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)CrossRefGoogle Scholar
  6. 6.
    Kowalczyk, W., Kozlowski, K., Tar, J.K.: Trajectory tracking for multiple unicycles in the environment with obstacles. In: International Conference on Robotics in Alpe-Adria-Danube Region (RAAD), pp. 451–456 (2010)Google Scholar
  7. 7.
    Kowalczyk, W., Przybyla, M., Kozlowski, K.: Control of a mobile robot and collision avoidance using navigation function-experimental verification. In: 2015 10th International Workshop on Robot Motion and Control (RoMoCo), pp. 148–152Google Scholar
  8. 8.
    Loria, A., Dasdemir, J., Alvarez Jarquin, N.: Leader follower formation and tracking control of mobile robots along straight paths. IEEE Trans Control Syst Technol 24(2), 727–732 (2016)CrossRefGoogle Scholar
  9. 9.
    Nguyen, V., Martinelli, A., Tomatis, N., Siegwart, R.: A comparison of line extraction algorithms using 2D laser rangefinder for indoor mobile robotics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1929–1934 (2005)Google Scholar
  10. 10.
    Panagou, D., Stipanovic, D.M., Voulgaris, P.G.: Distributed coordination control for multi-robot networks using Lyapunov-like barrier functions. IEEE Trans. Autom. Control 61(3), 617–632 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. In: Computer Graphics and Image Processing, pp. 244–256 (1972)Google Scholar
  12. 12.
    Rimon, E., Koditschek, D.E.: Exact robot navigation using cost functions: the case of distinct spherical boundaries. IEEE Int. Conf. Robot. Autom. 3, 1791–1796 (1988)Google Scholar
  13. 13.
    Rimon, E., Koditschek, D.E.: The construction of analytic diffeomorphisms for exact robot navigation on star worlds. Trans. Amer. Math. Soc. 327, 71–116 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)CrossRefGoogle Scholar
  15. 15.
    Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential fields. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)CrossRefGoogle Scholar
  16. 16.
    Rodriguez-Seda, E.J., Tang, C., Spong, M.W., Stipanovic, D.M.: Trajectory tracking with collision avoidance for nonholonomic vehicles with acceleration constraints and limited sensing. In: The International Journal of Robotics Research, pp. 1–34. USA (2014)Google Scholar
  17. 17.
    Rodriguez-Seda, E.J., Stipanovic, D.M., Spong, M.W.: Collision avoidance control with sensing uncertainties. In: Proc. Am. Control Conf., pp. 3363–3368. San Francisco (2011)Google Scholar
  18. 18.
    Rodriguez-Seda, E.J., Stipanovic, D.M., Spong, M.W.: Lyapunov-based cooperative avoidance control for multiple Lagrangian systems with bounded sensing uncertainties. In: Proc. IEEE Conf. Decision Control, pp. 4207–4213. Orlando (2011)Google Scholar
  19. 19.
    Roussos, G., Kyriakopoulos, K.J.: Completely decentralised navigation of multiple unicycle agents with prioritisation and fault tolerance. In: IEEE Conference on Decision and Control (CDC), pp. 1372–1377 (2010)Google Scholar
  20. 20.
    Roussos, G., Kyriakopoulos, K.J.: Decentralized and prioritized navigation and collision avoidance for multiple mobile robots. Distrib. Autonom. Robot. Syst. Springer Tracts Adv. Robot. 83, 189–202 (2013)CrossRefGoogle Scholar
  21. 21.
    Roussos, G., Kyriakopoulos, K.: Decentralized navigation and conflict avoidance for aircraft in 3-D space. IEEE Trans. Control Syst. Technol. 20(6), 1622–1629 (2012). doi: 10.1109/TCST.2011.2167974. CrossRefGoogle Scholar
  22. 22.
    Roussos, G., Dimarogonas, D., Kyriakopoulos, K.: 3D navigation and collision avoidance for nonholonomic aircraft-like vehicles. Int. J. Adaptive Control Signal Process. Special Issue: Air Traff. Manag. Challenges Opportun. Adv. Control 24(10), 900–920 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sanderson, A.C.: An open source C++ linear algebra library for fast prototyping and computationally intensive experiments. Technical Report, NICTA (2010)Google Scholar
  24. 24.
    Stipanovic, D.M., Hokayem, P.F., Spong, M.W., Siljak, D.: Cooperative avoidance control for multiagent systems. J. Dyn. Syst. Meas. Control 129, 699–707 (2007)CrossRefGoogle Scholar
  25. 25.
    Urakubo, T.: Feedback stabilization of a nonholonomic system with potential fields: application to a two-wheeled mobile robot among obstacles. Nonlinear Dyn. 81(3), 1475–1487 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Urakubo, T., Okuma, K., Tada, Y.: Feedback control of a two wheeled mobile robot with obstacle avoidance using potential functions. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) 3, 2428–2433 (2004)Google Scholar
  27. 27.
    Yang, H., Fan, X., Shi, P., Hua, C.: Nonlinear control for tracking and obstacle avoidance of a wheeled mobile robot with nonholonomic constraint. IEEE Trans. Control Syst. Technol. 24(2), 741–746 (2016)Google Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Wojciech Kowalczyk
    • 1
  • Mateusz Przybyla
    • 1
  • Krzysztof Kozlowski
    • 1
  1. 1.Chair of Control and Systems Engineering, Faculty of ComputingPoznan University of TechnologyPoznanPoland

Personalised recommendations