Visual Navigation for Mobile Robots: A Survey

  • Francisco Bonin-Font
  • Alberto Ortiz
  • Gabriel Oliver
Unmanned Systems Paper

Abstract

Mobile robot vision-based navigation has been the source of countless research contributions, from the domains of both vision and control. Vision is becoming more and more common in applications such as localization, automatic map construction, autonomous navigation, path following, inspection, monitoring or risky situation detection. This survey presents those pieces of work, from the nineties until nowadays, which constitute a wide progress in visual navigation techniques for land, aerial and autonomous underwater vehicles. The paper deals with two major approaches: map-based navigation and mapless navigation. Map-based navigation has been in turn subdivided in metric map-based navigation and topological map-based navigation. Our outline to mapless navigation includes reactive techniques based on qualitative characteristics extraction, appearance-based localization, optical flow, features tracking, plane ground detection/tracking, etc... The recent concept of visual sonar has also been revised.

Keywords

Mobile robots Visual navigation 

References

  1. 1.
    Abascal, J., Lazkano, E., Sierra, B.: Behavior-based indoor navigation. Ambient intelligence for scientific discovery. Foundations, theories, and systems, LNAI 3345, 263–285 (2005)Google Scholar
  2. 2.
    Antich, J., Ortiz, A.: Development of the control architecture of a vision-guided underwater cable tracker. Int. J. Intell. Syst. 20(5), 477–498 (2005)CrossRefGoogle Scholar
  3. 3.
    Antich, J., Ortiz, A., Oliver, G.: A control strategy for fast obstacle avoidance in troublesome scenarios: application in underwater cable tracking. In: Proc. of 7th IFAC Conference on Manoeuvring and Control of Marine Craft (MCMC) (2006)Google Scholar
  4. 4.
    Arkin, R.C.: Behaviour Based Robotics. The MIT Press (1998)Google Scholar
  5. 5.
    Atiya, S., Hager, G.D.: Real time vision-based robot localization. IEEE Trans. Robot. Autom. 9(6), 785–800 (1993)CrossRefGoogle Scholar
  6. 6.
    Badal, S., Ravela, S., Draper, B., Hanson, A.: A practical obstacle detection and avoidance system. In: Proc. of 2nd IEEE Workshop on Applications of Computer Vision, pp. 97–104 (1994)Google Scholar
  7. 7.
    Balasuriya, B., Ura, T.: Underwater cable following by twin-burger 2. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA) (2001)Google Scholar
  8. 8.
    Bellotto, N., Hu, H.: Multisensor integration for human–robot interaction. J. Intell. Cybern. Syst. 1 (2005), July. Available http://www.cybernetic.org.uk/ics
  9. 9.
    Bernardino, A., Santos-Victor, J.: Visual behaviours for binocular tracking. Robot. Auton. Syst. 25(3–4), 137–146 (1998)CrossRefGoogle Scholar
  10. 10.
    Borenstein, J., Koren, Y.: Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man Cybern. 19(5), 1179–1187 (1989)CrossRefGoogle Scholar
  11. 11.
    Borenstein, J., Koren, Y.: Real time obstacle avoidance for fast mobile robots in cluttered environments. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), pp. 572–577 (1990)Google Scholar
  12. 12.
    Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 7(3), 278–288 (1991)CrossRefGoogle Scholar
  13. 13.
    Braillon, C., Usher, K., Pradalier, C., Crowley, J.L., Laugier, C.: Fusion of stereo and optical flow data using occupancy grid. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 2302–2307 (2006)Google Scholar
  14. 14.
    Camus, T., Coombs, D., Herman, M., Hong, T.H.: Real-time single-workstation obstacle avoidance using only wide-field flow divergence. In: Proc. of 13th International Conference on Pattern Recognition (ICPR). Applications and Robotic Systems (1996)Google Scholar
  15. 15.
    Chao, M.T., Braunl, T., Zaknich, A.: Visually-guided obstacle avoidance. In: Proc. of 6th Int’l Conf. on Neural Information Processing ICONIP, vol. 2, pp. 650–655 (1999)Google Scholar
  16. 16.
    Chatila, R., Laumond, J.P.: Position referencing and consistent world modeling for mobile robots. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), pp. 138–145 (1985)Google Scholar
  17. 17.
    Choi, Y.H., Oh, S.Y.: Visual sonar based localization using particle attraction and scattering. In: Proc. of IEEE International Conference on Mechatronics and Automation, pp. 449–454 (July 2005)Google Scholar
  18. 18.
    Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion. The MIT Press (2005)Google Scholar
  19. 19.
    Christensen, H.I., Kirkeby, N.O., Kristensen, S., Knudsen, L.: Model-driven vision for indoor navigation. Robot. Auton. Syst. 12, 199–207 (1994)CrossRefGoogle Scholar
  20. 20.
    Cornall, T., Egan, G.: Optic Flow Methods Applied to Unmanned Air Vehicles. Academic Research Forum, Department of Electrical and Computer Systems Engineering, Monash University (2003)Google Scholar
  21. 21.
    Dalgleish, F.R., Tetlow, S.W., Allwood, R.L.: Hammerhead: an AUV with an Integral Laser Imaging Sensor. Oceanology (2004)Google Scholar
  22. 22.
    Dalgleish, F.R., Tetlow, S.W., Allwood, R.L.: Vision-based navigation of unmanned underwater vehicles: a survey. Part I: Vision Based Cable-, Pipeline- and Fish Tracking. Proc. Inst. Marine Eng. Sci. Technol. Part B, J. Mar. Design Oper. B(7), 51–56 (2004)Google Scholar
  23. 23.
    Dalgleish, F.R., Tetlow, S.W., Allwood, R.L.: Vision-based navigation of unmanned underwater vehicles: a survey. Part II: Vision based station keeping and positioning. Proc. Inst. Mar. Eng. Sci. Technol. Part B, J. Mar. Design Oper. B(8), 13–19 (2004)Google Scholar
  24. 24.
    Dao, N.X., You, B., Oh, S.: Visual navigation for indoor mobile robots using a single camera. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 1992–1997 (2005)Google Scholar
  25. 25.
    Davison, A.J.: Real time simultaneous localisation and mapping with a single camera. In: Proc. of International Conference on Computer Vision (ICCV) (2003)Google Scholar
  26. 26.
    Davison, A.J., González, Y., Kita, N.: Real-time 3D SLAM with wide-angle vision. In: Proc. of IFAC Symposium on Intelligent Autonomous Vehicles (2004)Google Scholar
  27. 27.
    Davison, A.J., Kita, N.: Sequential localization and map building for real time computer vision and robotics. Robot. Auton. Syst. 36(4), 171–183 (2001)CrossRefGoogle Scholar
  28. 28.
    DeSouza, G.N., Kak, A.C.: Vision for mobile robot navigation : a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 237–267 (2002)CrossRefGoogle Scholar
  29. 29.
    Dev, A., Kröse, B., Groen, F.: Navigation of a mobile robot on the temporal development of the optic flow. In: Proc. of IEEE Int’l Conf. of Intelligent Robots and Systems (IROS), pp. 558–563 (1997)Google Scholar
  30. 30.
    Dudek, G., Jenkin, M., Prahacs, C., Hogue, A., Sattar, J., Giguère, P., German, A., Liu, H., Saunderson, S., Ripsman, A., Simhon, S., Torres-Mendez, L.A., Milios, E., Zhang, P., Rekleitis, I.: A visually guided swimming robot. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS) (2005)Google Scholar
  31. 31.
    Fan, Y., Balasuriya, B.: Optical flow based speed estimation in auv target tracking. Proc. of IEEE Oceans (2001)Google Scholar
  32. 32.
    Fasola, J., Rybski, P.E., Veloso, M.: Fast goal navigation with obstacle avoidance using a dynamic local visual model. In: Proc. of SBAI’05, The VII Brazilian Symposium of Artificial Intelligence (2005)Google Scholar
  33. 33.
    Fasola, J., Veloso, M.: Real-time object detection using segmented and grayscale images. In: Proc. of IEEE Int’l Conf. on Robotics and Automations (ICRA), pp. 4088–4090 (2006)Google Scholar
  34. 34.
    Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte carlo localization for mobile robots. In: Proc. of IEEE Int’l Conference on Robotics and Automation (ICRA), pp. 1322–1328 (1999)Google Scholar
  35. 35.
    Ferruz, J., Ollero, A.: Real-time feature matching in image sequences for non-structured environments. Applications to vehicle guidance. J. Intell. Robot. Syst. 28, 85–123 (2000)CrossRefGoogle Scholar
  36. 36.
    Fleischer, S.D., Marks, R.L., Rock, S.M.: Improving real-time video mosaicing of the ocean floor. In: Proc. of IEEE Oceans (1995)Google Scholar
  37. 37.
    Foresti, G.L., Gentili, S.: A hierarchical classification system for object recognition in under water environments. IEEE J. Oceanic Eng. 1(27), 66–78 (2002)CrossRefGoogle Scholar
  38. 38.
    Garcia, R., Cufi, X., Pacheco, Ll.: Image mosaicking for estimating the motion of an underwater vehicle. In: Proc. of 5th IFAC Conference on Manoeuvring and Control of Marine Craft (MCMC) (2000)Google Scholar
  39. 39.
    Gartshore, R., Aguado, A., Galambos, C.: Incremental map buildig using an occupancy grid for an autonomous monocular robot. In: Proc. of Seventh International Conference on Control, Automation, Robotics and Vision ICARCV, pp. 613–618 (2002)Google Scholar
  40. 40.
    Gartshore, R., Palmer, P.: Exploration of an unknown 2D environment using a view improvement strategy. Towards Autonomous Robotic Systems, 57–64 (2002)Google Scholar
  41. 41.
    Gartshore, R., Palmer, P., Illingworth, J.: A novel exploration algorithm based on a improvement strategy. Int. J. Adv. Robot. Syst. 2(4), 287–294 (2005)Google Scholar
  42. 42.
    Gaspar, J., Winters, N., Santos-Victor, J.: Vision-based navigation and environmental representations with an omni-directional camera. IEEE Trans. Robot. Autom. 16(6), 890–898 (2000)CrossRefGoogle Scholar
  43. 43.
    Georgiades, C., German, A., Hogue, A., Liu, H., Prahacs, C., Ripsman, A., Sim, R., Torres, L.A., Zhang, P., Buehler, M., Dudek, G., Jenkin, M., Milios, E.: An aquatic walking robot. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS) (2004)Google Scholar
  44. 44.
    Giralt, G., Sobek, R., Chatila, R.: A multi-level planning and navigation system for a mobile robot; a firts approach to Hilare. In: Proc. of Sixth Intl Joint Conf. on Artificial Intelligence, pp. 335–337 (1979)Google Scholar
  45. 45.
    Goldberg, S.B., Maimone, M.W., Matthies, L.: Stereo vision and rover navigation software for planetary exploration. In: Proc. of IEEE Aerospace Conference Proceedings, pp. 5–2025, 5–2036 (2002)Google Scholar
  46. 46.
    Gracias, N., Santos-Victor, J.: Underwater video mosaics as visual navigation maps. Comput. Vis. Image Underst. 1(79), 66–91 (2000)CrossRefGoogle Scholar
  47. 47.
    Graefe, V.: Driveless highway vehicles. In: Proc. of Int’l Hi Tech Forum, pp. 86–95 (1992)Google Scholar
  48. 48.
    Graefe, V.: Vision for autonomous mobile robots. In: Proc. of IEEE Workshop on Advanced Motion Control, pp. 57–64 (1992)Google Scholar
  49. 49.
    Graefe, V.: Vision for intelligent road vehicles. In: Proc. of the IEEE Symposium of Intelligent Vehicles, pp. 135–140 (1993)Google Scholar
  50. 50.
    Graefe, V., Kuhnert, K.: Vision-based autonomous road vehicles. Vision Based Vehicle Guidance, Springer-Verlag New York, pp. 1–29 (1992)Google Scholar
  51. 51.
    Grau, A., Climent, J., Aranda, J.: Real-time architecture for cable tracking using texture descriptors. In: Proc. of IEEE Oceans Conference, vol. 3, pp. 1496–1500 (1998)Google Scholar
  52. 52.
    Green, W.E., Oh, P.Y., Barrows, G.L.: Flying insects inspired vision for autonomous aerial robot maneuvers in near-earth environments. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), pp. 2347–2352 (2004)Google Scholar
  53. 53.
    Green, W.E.,. Oh, P.Y., Sevcik, K., Barrows, G.L.: Autonomous landing for indoor flying robots using optic flow. In: Proc. of IMECE International Mechanical Engineering Congress, vol. 2, pp. 1341–1346 (2003)Google Scholar
  54. 54.
    Haddad, H., Khatib, M., Lacroix, S., Chatila, R.: Reactive navigation in outdoor environments using potential fields. In: Proc. IEEE Int’l Conf. on Robotics and Automation (ICRA), pp. 1232–1237 (1998)Google Scholar
  55. 55.
    Hallset, J.: Testing the robustness of an underwater vision system. In: Laplante, P., Stoyenko, A. (eds.) Real-Time Imaging: Theory, Techniques, and Applications. IEEE, pp. 225–260 (1996)Google Scholar
  56. 56.
    Harris, C., Stephens, M.: Combined corner and edge detector. In: Proc. of Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  57. 57.
    Hashima, M., Hasegawa, F., Kanda, S., Maruyama, T., Uchiyama, T.: Localization and obstacle detection for a robot for carrying food trays. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 345–351 (1997)Google Scholar
  58. 58.
    Haywood, R.: Acquisition of a micro scale photographic survey using an autonomous submersible. In: Proc. of IEEE Oceans, vol. 18, pp. 1423–1426 (1986)Google Scholar
  59. 59.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)CrossRefGoogle Scholar
  60. 60.
    Horswill, I.: Visual collision avoidance by segmentation. In: Proc. of ARPA94, pp. II:1135–1141, (1994)Google Scholar
  61. 61.
    Howard, A., Tunstel, E., Edwards, D., Carlson, A.: Enhancing fuzzy robot navigation systems by mimicking human visual perception of natural terrain traversability. In: IFSA World Congress and 20th NAFIPS International Conference, vol. 1, pp. 7–12 (2001)Google Scholar
  62. 62.
    Hrabar, S., Sukhatme, G.S., Corke, P., Usher, K., Roberts, J.: Combined optic-flow and stereo-based navigation of urban canyons for a UAV. In: Proc. of IEEE Int’l Conf. of Intelligent Robots and Systems (IROS), pp. 3309–3316 (2005)Google Scholar
  63. 63.
    Jochem, T.M., Pomerleau, D.A., Thorpe, C.E.: Vision based neural network road and intersection detection and traversal. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), vol. 3, pp. 344–349 (1995)Google Scholar
  64. 64.
    Jones, S.D., Andresen, C., Crowley, J.L.: Appearance based processes for visual navigation. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 551–557 (1997)Google Scholar
  65. 65.
    Kabuka, M., Arenas, A.E.: Position verification of a mobile robot using standard pattern. Proc. IEEE Int’l Conf. Robot. Autom. (ICRA), 3(6), 505–516 (1987)Google Scholar
  66. 66.
    Kak, A.C., de Souza, G.N.: Robotic vision: what happened to the visions of yesterday? In: Proc. of 16th International Conference on Pattern Recognition, pp. 839–847 (2002)Google Scholar
  67. 67.
    Kidono, K., Miura, J., Shirai, Y.: Autonomous visual navigation of a mobile robot using a human-guided experience. Robot. Auton. Syst. 40(2–3), 121–130 (2002)CrossRefGoogle Scholar
  68. 68.
    Kim, D., Nevatia, R.: Simbolic navigation with a generic map. In: Proc. of IEEE Workshop on Vision for Robots, pp. 136–145 (1995)Google Scholar
  69. 69.
    Kosaka, A., Kak, A.C.: Fast vision-guided mobile robot navigation using model-based reasoning and prediction of uncertainties. Comput. Vis. Graph. Image Underst. 56(3), 271–329 (1992)MATHGoogle Scholar
  70. 70.
    Kosecka, J., Zhou, L., Barber, P., Duric, Z.: Qualitative image based localization in indoors environments. In: Proc. of IEEE Intl Conf. Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 3–8 (2003)Google Scholar
  71. 71.
    Krotkov, E., Herbert, M.: Mapping and positioning for a prototype lunar rover. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), pp. 2913–2919 (1995)Google Scholar
  72. 72.
    Latombe, J.: Robot Motion Planning. Kluwer Academic Publishers (1991)Google Scholar
  73. 73.
    Lenser, S., Veloso, M.: Visual sonar: fast obstacle avoidance using monocular vision. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 886–891 (2003)Google Scholar
  74. 74.
    Leonard, J., Durrant-Whyte, H.F.: Simultaneous map building and localization for an autonomous mobile robot. In: Proc. of IEEE Intl Workshop on Intelligent Robots and Systems, pp. 1442–1447 (1991)Google Scholar
  75. 75.
    Liang, B., Pears, N.: Visual navigation using planar homographies. In: Proc. of IEEE Int’l Conf. on Robotics and Automations (ICRA), vol. 1, pp. 205–210 (2002)Google Scholar
  76. 76.
    Lorigo, L.M., Brooks, R.A., Grimson, W.E.: Visually-guided obstacle avoidance in unstruc tured environments. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 373–379 (1997)Google Scholar
  77. 77.
    Lots, J-F., Lane, D.M., Trucco, E.: Application of a 2 1/2 D visual servoing to underwater vehicle station-keeping. In: Proc. of IEEE Oceans (2000)Google Scholar
  78. 78.
    Lowe, D.G.: Object recognition from local scale invariant features. In: Proc. of International Conference on Computer Vision (ICCV), pp. 1150–1157 (1999)Google Scholar
  79. 79.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stero vision. In: Proc. of DARPA Image Uderstanding Workshop, pp. 121–130 (1981)Google Scholar
  80. 80.
    Maja, J.M., Takahashi, T., Wang, Z.D., Nakano, E.: Real-time obstacle avoidance algorithm for visual navigation. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 925–930 (2000)Google Scholar
  81. 81.
    Manessis, A., Hilton, A.: Scene modelling from sparse 3D data. J. Image Vis. Comput. 23(10), 900–920 (2005)CrossRefGoogle Scholar
  82. 82.
    Manessis, A., Hilton, A., Palmer, P., McLauchlan, P., Shen, X.: Reconstruction of scene models from sparse 3d structure. In: Proc. of IEEE Intl Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 2666–2673 (2000)Google Scholar
  83. 83.
    Marks, R.L., Rocks, S., Lee, M.J.: Real-time video mosaicing of the ocean floor. In: Proc. of Symposium on Autonomous Underwater Vehicle Technology, pp. 21–27 (1994)Google Scholar
  84. 84.
    Martens, S., Gaudian, P., Carpenter, G.A.: Mobile robot sensor integration with fuzzy ARTMAP. In: Proc. of the 1998 IEEE ISIC/CIRA/ISAS Joint Conferenc, pp. 307–312 (1998)Google Scholar
  85. 85.
    Martin, M.C.: Evolving visual sonar: depth from monocular images. Pattern Recogn. Lett. 27, 1174–1180 (2006)CrossRefGoogle Scholar
  86. 86.
    Matsumoto, S., Ito, Y.: Real-time based tracking of submarine cables for AUV/ROV. In: Proc. of IEEE Oceans, vol. 3, pp. 1997–2002 (1995)Google Scholar
  87. 87.
    Matsumoto, Y., Ikeda, K., Inaba, M., Inoue, H.: Visual navigation using omnidirectional view sequence. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 317–322 (1999)Google Scholar
  88. 88.
    Matsumoto, Y., Inaba, M., Inoue, H.: Visual navigation using view sequenced route representation. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), vol. 1, pp. 83–88 (1996)Google Scholar
  89. 89.
    Matsumoto, Y., Sakai, K., Inaba, M., Inoue, H.: View-based approach to robot navigation. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 1702–1708 (2000)Google Scholar
  90. 90.
    Matthies, L., Gat, E., Harrison, R., Wilcox, B., Volpe, R., Litwin, T.: Mars microrover navigation: performance evaluation and enhancement. In: Proc. of IEEE Int’l Conf. of Intelligent Robots and Systems (IROS), vol. 1, pp. 433–440 (1995)Google Scholar
  91. 91.
    Matthies, L., Shafer, S.A.: Error modeling in stereo navigation. IEEE J. Robot. Autom. 3(3), 239–248 (1987)Google Scholar
  92. 92.
    McLauchlan, P., Murray, D.: A unifing framework for structure and motion recovery from image sequences. In: Proc. of European Conference on Computer Vision (ECCV), pp. 314–320 (1995)Google Scholar
  93. 93.
    Mejias, L.O., Saripalli, S., Sukhatme, G.S., Cervera, P.C.: Detection and tracking of external features in an urban environment using an autonomous helicopter. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), pp. 3972–3977 (2005)Google Scholar
  94. 94.
    Meng, M., Kak, A.C.: Mobile robot navigation using neural networks and nonmetrical environment models. In: Proc. of IEEE Control Systems, pp. 30–39 (1993)Google Scholar
  95. 95.
    Meng, M., Kak, A.C.: NEURO-NAV: a neural network based architecture for vision-guided mobile robot navigation using non-metrical models of the environment. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), vol. 2, pp. 750–757 (1993)Google Scholar
  96. 96.
    Moravec, H.P.: The Stanford cart and the CMU rover. In: Proceedings of IEEE, vol. 71, pp. 872–884 (1983)Google Scholar
  97. 97.
    Morita, H., Hild, M.: Panoramic view-based navigation in outdoor environments based on support vector learning. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 2302–2307 (2006)Google Scholar
  98. 98.
    Morita, H., Hild, M., Miura, J., Shirai, Y.: Panoramic view-based navigation in outdoor environments based on support vector learning. In Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 1885–1890 (2006)Google Scholar
  99. 99.
    Negahdaripour, S., Xu, X., Jin, L.: Direct estimation of motion from seafloor images for automatic station-keeping of submersible platforms. IEEE J. Oceanic Eng. 24(3), 370–382 (1999)CrossRefGoogle Scholar
  100. 100.
    Netter, T., Franceschini, N.: A robotic aircraft that follows terrain using a neuromorphic eye. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), vol. 1, pp. 129–134 (2002)Google Scholar
  101. 101.
    Ohno, T., Ohya, A., Yuta, S.: Autonomous navigation for mobile robots referring pre-recorded image sequence. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), vol. 2, pp. 672–679 (1996)Google Scholar
  102. 102.
    Ollero, A., Ferruz, J., Caballero, F., Hurtado, S., Merino, L.: Motion compensation and object detection for autonomous helicopter visual navigation in the COMETS system. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), pp. 19–24 (2004)Google Scholar
  103. 103.
    Oriolo, G., Ulivi, G., Vendittelli, M.: On-line map building and navigation for autonomous mobile robots. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), pp. 2900–2906 (1995)Google Scholar
  104. 104.
    Pan, J., Pack, D.J., Kosaka, A., Kak, A.C.: FUZZY-NAV: a vision-based robot navigation architecture using fuzzy inference for uncertainty-reasoning. In: Proc. of IEEE World Congress Neural Networks, vol. 2, pp. 602–607 (1995)Google Scholar
  105. 105.
    Pears, N., Liang, B.: Ground plane segmentation for mobile robot visual navigation. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 1513–1518 (2001)Google Scholar
  106. 106.
    Pomerleau, D.A.: ALVINN: an autonomous land vehicle in a neural network. Technical Report CMU-CS-89-107, Carnegie Mellon University (1989)Google Scholar
  107. 107.
    Remazeilles, A., Chaumette, F., Gros, P.: Robot motion control from a visual memory. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), pp. 4695–4700 (2004)Google Scholar
  108. 108.
    Remazeilles, A., Chaumette, F., Gros, P.: 3D navigation based on a visual memory. In: Proc. of IEEE Int’l Conf. on Robotics and Automations (ICRA), pp. 2719–2725 (2006)Google Scholar
  109. 109.
    Rife, J., Rock, S.: A low energy sensor for auv-based jellyfish tracking. In: Proc. of 12th International Symposium on Unmanned Untethered Submersible Technology (2001)Google Scholar
  110. 110.
    Rives, P., Borelly, J.J.: Visual servoing techniques applied to an underwater vehicle. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), pp. 20–25 (1997)Google Scholar
  111. 111.
    Royer, E., Bom, J., Dhome, M., Thuillot, B., Lhuillier, M., Marmoiton, F.: Outdoor autonomous navigation using monocular vision. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 3395–3400 (2005)Google Scholar
  112. 112.
    Saeedi, P., Lawrence, P.D., Lowe, D.G.: Vision-based 3-D trajectory tracking for unknown environments. IEEE Trans. Robot. 22(1), 119–136 (2006)CrossRefGoogle Scholar
  113. 113.
    Santos-Victor, J., Sandini, G.: Visual-based obstacle detection: a purposive approach using the normal flow. In: Proc. of International Conference on Intelligent Autonomous Systems (1995)Google Scholar
  114. 114.
    Santos-Victor, J., Sandini, G., Curotto, F., Garibaldi, S.: Divergence stereo for robot navigation: learning from bees. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (1993)Google Scholar
  115. 115.
    Schleicher, D., Bergasa, L.M., Barea, R., Lopez, E., Ocaña, M.: Real-time simultaneous localization and mapping using a wide-angle stereo camera. In: Proc. of IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS’06), pp. 55–60 (2006)Google Scholar
  116. 116.
    Se, S., Lowe, D.G., Little, J.: Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. Int. J. Robot. Res. 21(8), 735–758 (2002)CrossRefGoogle Scholar
  117. 117.
    Se, S., Lowe, D.G., Little, J.: Vision-based global localization and mapping for mobile robots. IEEE Trans. Robot. 21(3), 364–375 (2005)CrossRefGoogle Scholar
  118. 118.
    Shen, J., Hu, H.: Visual navigation of a museum guide robot. In: The Six World Congress on Intelligent Control and Automation (WCICA), vol. 2, pp. 9169–9173 (2006)Google Scholar
  119. 119.
    Shi, J., Tomasi, C.: Good features to track. In: Proc. of IEEE Intl Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 593–600 (1994)Google Scholar
  120. 120.
    Silpa-Anan, C., Brinsmead, T., Abdallah, S., Zelinsky, A.: Preliminary experiments in visual servo control for autonomous underwater vehicle. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), vol. 4, pp. 1824–1829 (2001)Google Scholar
  121. 121.
    Sim, R., Dudek, G.: Learning generative models of scene features. In: Proc. of IEEE Intl Conf. Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 406–412 (2001)Google Scholar
  122. 122.
    Sim, R., Dudek, G.: Effective exploration strategies for the construction of visual maps. In: Proc. of 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, vol. 3, pp. 3224–3231 (2003)Google Scholar
  123. 123.
    Sim, R., Elinas, P., Griffin, M., Shyr, A., Little, J.J.: Design and analysis of a framework for real-time vision-Based SLAM using Rao-Blackwellised particle filters. In: Proc. of the 3rd Canadian Conference on Computer and Robotic Vision (2006)Google Scholar
  124. 124.
    Sim, R., Little, J.J.: Autonomous vision-based exploration and mapping using hybrid maps and Rao-Blackwellised particle filters. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS) (2006)Google Scholar
  125. 125.
    Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationship in robotics. In: Cox, I., Wilfong, G.T. (eds.) Autonomous Robot Vehicles, pp. 167–193 (1990)Google Scholar
  126. 126.
    Srinivasan, V., Lehrer, M., Kircner, W.H., Zhang, S.W.: Range perception through apparent image speed in freely flying honeybees. Vis. Neurosci. 6(5), 519–35 (May 1991)CrossRefGoogle Scholar
  127. 127.
    Srinivasan, V., Thurrowgood, S., Soccol, D.: An optical system for guidance of terrain following in UAVs. In: Proc. of the IEEE International Conference on Video and Signal Based Surveillance (AVSS), pp. 51–56 (2006)Google Scholar
  128. 128.
    Srinivasan, V., Zhang, S.W., Chahl, J.S., Stange, G., Garratt, M.: An overview of insect-inspired guidance for application in ground and airborne platforms. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 218(6), 375–388 (2004)Google Scholar
  129. 129.
    Thrun, S.: Probabilistic algorithms in robotics. Technical Report CMU-CS-00-126, Carnegie Mellon University (2000)Google Scholar
  130. 130.
    Sugihara, K.: Some location problems for robot navigation using a single camera. Comput. Vis. Graph. Image Process. 42, 112–129, (1988)CrossRefGoogle Scholar
  131. 131.
    Talukder, A., Goldberg, S., Matties, L., Ansar, A.: Real-time detection of moving objects in a dynamic scene from moving robotic vehicles. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 1308–1313 (October 2003)Google Scholar
  132. 132.
    Talukder, A., Matties, L.: Real-time detection of moving objects from moving vehicles using dense stereo and optical flow. In: Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), pp. 3718–3725 (October 2004)Google Scholar
  133. 133.
    Temizer, S., Kaelbling, L.P.: Optical flow based local navigation. Web Page. Massachusetts Institute of Technology (2003) http://people.csail.mit.edu/lpk/mars/
  134. 134.
    Thorpe, C.: FIDO: vision and navigation for a mobile robot. In: PhD dissertation, Dept Computer Science, Carnegie Mellon University (1983)Google Scholar
  135. 135.
    Thorpe, C., Herbert, M.H., Kanade, T., Shafer, S.A.: Vision and navigation for the Carnegie-Mellon navlab. IEEE Trans. Pattern Anal. Mach. Intell. 10(3), 362–372 (1988)CrossRefGoogle Scholar
  136. 136.
    Thorpe, C., Kanade, T., Shafer, S.A.: Vision and navigation for the Carnegie-Mellon Navlab. In: Proc. of Image Understand Workshop, pp. 143–152 (1987)Google Scholar
  137. 137.
    Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation. Artif. Intell. 99(1), 21–71 (1998)MATHCrossRefGoogle Scholar
  138. 138.
    Thrun, S., Bennewitz, M., Burgard, W., Cremers, A., Dellaert, F., Fox, D.: MINERva: a second-generation museum tour-guide robot. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), vol. 3, pp. 1999–2005 (May 1999)Google Scholar
  139. 139.
    Tomono, M.: 3-D Object map building using dense object models with sift-based recognition features. In: Proc. of IEEE Int’l Conf. of Intelligent Robots and Systems (IROS), pp. 1885–1890 (2006)Google Scholar
  140. 140.
    Torr, P., Fitzgibbon, A.W., Zisserman, A.: Maintaining a multiple motion model hypotheses over many views to recover matching and structure. In: Proc. of International Conference on Computer Vision (ICCV), pp. 485–491 (1998)Google Scholar
  141. 141.
    Trucco, E., Plakas, K.: Video tracking : a concise survey. IEEE J. Ocean. Eng. 31(2), 520–529 (2006)CrossRefGoogle Scholar
  142. 142.
    Truk, M.A., Morgenthaler, D.G., Gremban, K.D., Marra, M.: VITS – A vision system for autonomous land vehicle navigation. IEEE Trans. Pattern Anal. Mach. Intell. 10(3), 342–361 (1988)CrossRefGoogle Scholar
  143. 143.
    Tsugawa, S., Yatabe, T., Hisrose, T., Matsumoto, S.: An automobile with artificial intelligence. In: Proc. of Sixth International Joint Conference on Artificial Intelligence, pp. 893–895 (1979)Google Scholar
  144. 144.
    Tsubouchi, T., Yuta, S.: Map-assisted vision system of mobile robots for reckoning in a building environment. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), pp. 1978–1984 (1987)Google Scholar
  145. 145.
    van der Zwaan, S., Santos-Victor, J.: An insect inspired visual sensor for the autonomous navigation of a mobile robot. In: Proc. of the Seventh International Sysposium on Intelligent Robotic Systems (SIRS) (1999)Google Scholar
  146. 146.
    Wilcox, B., Matties, L., Gennery, D., Copper, B., Nguyen, T., Litwin, T., Mishkin, A., Stone, H.: Robotic vehicles for planetary exploration. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), pp. 175–180 (1992)Google Scholar
  147. 147.
    Winters, N., Santos-Victor, J.: Omnidirectional visual navigation. In: Proc. of IEEE Int’l Symposium on Intelligent Robotic Systems (SIRS), pp. 109–118 (1999)Google Scholar
  148. 148.
    Wooden, D.: A guide to vision-based map building. IEEE Robot. Autom. Mag. 13, 94–98 (2006)CrossRefGoogle Scholar
  149. 149.
    Xu, X., Negahdaripour, S.: Mosaic-based positioning and improved motion estimation methods for automatic navigation of sumersible vehicles. IEEE J. Ocean. Eng. 27(1), 79–99 (2002)CrossRefGoogle Scholar
  150. 150.
    Zhou, C., Wei, Y., Tan, T.: Mobile robot self-localization based on global visual appearance features. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), pp. 1271–1276 (2003)Google Scholar
  151. 151.
    Zhou, J., Li, B.: Homography-based ground detection for a mobile robot platform using a single camera. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA), pp. 4100–4101 (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Francisco Bonin-Font
    • 1
  • Alberto Ortiz
    • 1
  • Gabriel Oliver
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of the Balearic IslandsPalma de MallorcaSpain

Personalised recommendations