Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

On modeling of substrate loading in GaN HEMT using grey wolf algorithm

  • 1 Accesses

Abstract

In this paper, four different equivalent circuit models to describe substrate loading effect in GaN HEMT on Si substrate are investigated. The effect is characterized by Z-parameter measurements of open de-embedding structure for 16 × 200-μm GaN HEMT on Si substrate. The grey wolf optimization (GWO)-based procedure is developed to extract optimal values for the model elements. The performance of the proposed technique is evaluated by using two other meta-heuristic optimizations, the well-known particle swarm and the recently developed whale algorithm. The three extraction procedures are evaluated in terms of their effectiveness and rate of convergences. The models are validated by means of S-parameters simulation for the considered device at different passive and active bias conditions. A very good agreement with measurements is achieved when using the GWO, validating its applicability for small- and large-signal modeling applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Jarndal, A., Essaadali, R., Kouki, A.: A reliable model parameter extraction method applied to AlGaN/GaN HEMTs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(2), 211–219 (2016)

  2. 2.

    Hussein, A., Jarndal, A.: An improved reliable PSO based parameter extraction method applied to GaN HEMTs for mm-wave applications. In: International conference on electrical and computing technologies and applications (ICECTA), Ras Al Khaimah, p. 1 (2017)

  3. 3.

    Chumbes, E., Schremer, A., Smart, J., Wang, Y., MacDonald, N., Hogue, D., Komiak, J., Lichwalla, S., Leoni, R., Shealy, J.: AlGaN/GaN high electron mobility transistors on Si(111) substrates. IEEE Trans. Electron. Dev. 48, 420–426 (2001)

  4. 4.

    Johnson, J.W., Gao, J., Lucht, K., Williamson, J., Strautin, C., Riddle, J., Therrien, R., Rajagopal, P., Roberts, J.C., Vescan, A., Brown, J.D., Hanson, A., Singhal, S., Borges, R., Piner, E.L., Linthicum, K.J.: Material process and device development of GaN-based HFETs on silicon substrates. Proc. Electrochem. Soc. 6, 405–419 (2004)

  5. 5.

    Jarndal, A., Kompa, G.: A simple, direct and reliable extraction method applied to GaN devices. Int. J. Electron. (2016). https://doi.org/10.1080/00207217.2016.1218058

  6. 6.

    Hussein, A., Jarndal, A.: Particle-swarm based small-signal modeling applied to GaN devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(9), 1816–1824 (2018)

  7. 7.

    Jarndal, A., Hussein, A., Crupi, G., Caddemi, A.: Reliable noise modeling of GaN HEMTs for designing low-noise amplifiers. Int. J. Numer. Model. (2019). https://doi.org/10.1002/jnm.2585.

  8. 8.

    Sahoo, A.K., Subramani, N.K., Nallatamby, J.C., Sylvain, L., Loyez, C., Quere, R., Medjdoub, F.: Small signal modeling of high electron mobility transistors on siliconand silicon carbide substrate with consideration of substrate lossmechanism. Solid State Electron. 115(Part A), 12–16 (2016)

  9. 9.

    Rehman, S., Rafique, U., Ahmed, U., Khan, M., Ahmed, M.: Effects of substrate on the AC performance of submicron GaN HEMTs. In: Proceedings of 13th International Conference on Emerging Technologies (ICET), Islamabad, 2017

  10. 10.

    Alt, A., Marti, D., Bolognesi, C.: Transistor Modeling. IEEE Microwave Magazine, Piscataway (2013)

  11. 11.

    Chumbes, E., Schremer, A., Smart, J., Wang, Y., Mac Donald, N., Hogue, D., Komiak, J., Lichwalla, S., Leoni, R., Shealy, J.: AlGaN/GaN high electron mobility transistors on Si(111) substrates. IEEE Trans. Electron. Dev. 48(3), 420–426 (2001)

  12. 12.

    Mirjalili, S., Mirjalili, S., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

  13. 13.

    Gu, Q., Li, X., Jiang, S.: Hybrid genetic grey wolf algorithm for large-scale global optimization. Complexity, vol. 2019, Article ID 2653512, p. 18

  14. 14.

    Komaki, G.M., Kayvanfar, V.: Grey wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time. J. Comput. Sci. 8, 109–120 (2015)

  15. 15.

    Daniel, E., Anitha, J., Kamaleshwaran, K.K., Rani, I.: Optimum spectrum mask based medical image fusion using grey wolf optimization. Biomed. Signal Process. Control 34, 36–43 (2017)

  16. 16.

    Kennedy, J., Eberhart,R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

  17. 17.

    Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

  18. 18.

    Bozorg-Haddad, O., Solgi, M., Loáiciga, Hugo A.: Metaheuristic and Evolutionary Algorithms for Engineering Optimization. Wiley, New York (2017)

  19. 19.

    Bonyadi, M.R., Michalewicz, Z.: Analysis of stability, local convergence, and transformation sensitivity of a variant of the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 20(3), 370–385 (2016)

  20. 20.

    Tawhid, M.A., Ali, A.F.: A hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function. Memet. Comput. 9, 1–13 (2017)

  21. 21.

    Mohammed, H.M., Umar, S.U., Rashid, T.A.: A systematic and meta-analysis survey of whale optimization algorithm. Comput. Intell. Neurosci., vol. 2019, Article ID 8718571, p. 25

  22. 22.

    Crupi, G., Schreurs, D.: Microwave de-embedding. Academic Press, Oxford (2014)

  23. 23.

    Jarndal, A.H., Muhaureq, S.: A particle swarm neural networks electrothermal modeling approach applied to GaN HEMTs. J. Comput. Electron. 18, 1272–1279 (2019). https://doi.org/10.1007/s10825-019-01397-1

  24. 24.

    Faris, H., Aljarah, I., Al-Betar, M., Mirjalili, S.: Grey wolf optimizer: a review of recent variants and applications. Neural Comput. Appl. 30, 413–435 (2018)

  25. 25.

    Gao, Z.-M., Zhao, J.: An improved grey wolf optimization algorithm with variable weights. Comput. Intell. Neurosci. vol. 2019, Article ID 2981282, p. 13

  26. 26.

    Rodríguez, L., Castillo, O., Soria, J.: Grey wolf optimizer with dynamic adaptation of parameters using fuzzy logic. In: 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp 3116–3123 (2016)

  27. 27.

    Fan, J., Hu, M., Chu, X., Yang, D.: A comparison analysis of swarm intelligence algorithms for robot swarm learning. In: 2017 Winter Simulation Conference (WSC), Las Vegas, NV, Dec. 2017

  28. 28.

    Md Rahman Tanveer, S., Md Islam, J., Akhand, M.A.H.: A comparative study on prominent swarm intelligence methods for function optimization. Glob. J. Technol. Optim. 7, 203 (2016). https://doi.org/10.4172/2229-8711.1000203

  29. 29.

    vanden Bergh, F., Engelbrecht, P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

  30. 30.

    Jarndal, A., Markos, A.Z., Kompa, G.: Improved modeling of GaN HEMT on Si substrate for design of RF power amplifiers. IEEE Trans. Microw. Theory Techn. 59(3), 644–651 (2011)

  31. 31.

    Jarndal, A.: Measurements uncertainty and modeling reliability of GaN HEMTs. In: The International Conference on Modeling, Simulation and Applied Optimization conference, Tunisia, Hammamet, pp. 1–4, April 2013

Download references

Acknowledgements

The author gratefully acknowledges the support from the University of Sharjah, Sharjah, United Arab Emirates.

Author information

Correspondence to Anwar Jarndal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jarndal, A. On modeling of substrate loading in GaN HEMT using grey wolf algorithm. J Comput Electron (2020). https://doi.org/10.1007/s10825-020-01464-y

Download citation

Keywords

  • Grey wolf optimizer
  • Whale optimization algorithm
  • Particle swarm optimization
  • GaN HEMT
  • Open de-embedding structure
  • Substrate loading