Skip to main content
Log in

Elevated CO2 accelerated the bloom of three Ulva species after one life cycle culture

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Human activities and the resulting global climate change have profound effects on ecosystems, and economic and social systems, including those dependent on the ocean. Increasing concentrations of atmospheric CO2 have led to gradual changes in the marine carbonate system. It is well known that environmental changes determine the composition and abundance of algal populations. In the present study, we evaluated the growth, photosynthesis, nutrient uptake rates, tissue C and N content, nitrate reductase activity, and nitrate transporter gene expression of Ulva prolifera, Ulva linza, and Ulva compressa exposed to 400, 1000, and 2000 ppm CO2 levels after one life cycle culture. Elevated CO2 promoted the rapid propagation of three Ulva species, which can result in the formation of a green tide. This was due to enhanced photosynthetic and respiration efficiency, reductions in energy requirements for biosynthesis and metabolism for maintaining external pH, and promotion of NO3 uptake by increased NO3 gene expression level and NO3 reductase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Babaranti O, Horn S, Jowett T, Frew R (2019) Isotopic signatures in Mytilus galloprovincialis and Ulva latuca as bioindicators for assessing discharged sewage effluent in coastal waters along Otago Peninsula, New Zealand. Nephron Clin Pract 3:53–64

    Google Scholar 

  • Bhola V, Swalaha F, Kumar RR, Singh M, Bux F (2014) Overview of the potential of microalgae for CO2 sequestration. Int J Environ Sci Technol 11:2103–2118

    Article  CAS  Google Scholar 

  • Bonanno G, Veneziano V, Piccione V (2020) The alga Ulva lactuca (Ulvaceae, Chlorophyta) as a bioindicator of trace element contamination along the coast of Sicily, Italy. Sci Total Environ 699:134329–134329

  • Borum J, Pedersen O, Kotula L, Fraser MW, Statton J, Colmer TD, Kendrick GA (2016) Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species. Plant Cell Environ 39:1240–1250

    Article  CAS  PubMed  Google Scholar 

  • Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  PubMed  Google Scholar 

  • Chabane K, Bahbah L, Seridi H (2018) Ecological quality status of the Algiers coastal waters by using macroalgae assemblages as bioindicators (Algeria, Mediterranean Sea). Mediterr Mar Sci 19:305

    Google Scholar 

  • Charlier RH, Morand P, Finkl CW, Thys A (2008) Green tides on the Brittany coasts. Environ Res Eng Manage 3:52–59

  • Chen BB, Zou DH, Zhu MJ (2017) Growth and photosynthetic responses of Ulva lactuca (Ulvales, Chlorophyta) germlings to different pH levels. Ophelia 13:351–357

    Google Scholar 

  • Cosgrove J, Borowitzka MA (2010) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prásil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 1–17

    Google Scholar 

  • Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldivar R (2015) Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J Clean Prod 98:53–65

    Article  CAS  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Fan X, Xu D, Wang Y, Zhang X, Cao S, Mou S, Ye N (2014) The effect of nutrient concentrations, nutrient ratios and temperature on photosynthesis and nutrient uptake by Ulva prolifera: implications for the explosion in green tides. J Appl Phycol 26:537–544

    Article  CAS  Google Scholar 

  • Fernández PA, Roleda MY, Leal PP, Hurd CL (2017a) Seawater ph, and not inorganic nitrogen source, affects pH at the blade surface of Macrocystis pyrifera: implications for responses of the giant kelp to future oceanic conditions. Physiol Plantarum 159:107–119

    Article  Google Scholar 

  • Fernández PA, Roleda MY, Leal PP, Hepburn CD, Hurd CL (2017b) Tissue nitrogen status does not alter the physiological responses of Macrocystis pyrifera to ocean acidification. Mar Biol 164:177

    Article  Google Scholar 

  • Gao G, Beardall J, Bao M, Wang C, Ren W, Xu J (2018) Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga Ulva linza. Biogeosciences 15:3409–3420

    Article  CAS  Google Scholar 

  • Gao K, Aruga Y, Asada K, Kiyohara M (1993) Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J Appl Phycol 5:563–571

    Article  CAS  Google Scholar 

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    Article  CAS  Google Scholar 

  • Gordillo FJ, Niell FX, Figueroa FL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70

    Article  CAS  PubMed  Google Scholar 

  • He Y, Ao Y, Yin Y, Yuan A, Che T, Li L, Shen S (2019) Comparative transcriptome analysis between floating and attached Ulva prolifera in studying green tides in the Yellow Sea. Algal Res 44:1–10

  • Hu S, Zhou B, Wang Y, Wang Y, Zhang X, Zhao Y, Zhao X, Tang X (2017) Effect of CO2-induced seawater acidification on growth, photosynthesis and inorganic carbon acquisition of the harmful bloom-forming marine microalga, Karenia mikimotoi. PloS ONE 12:e0183289

  • Jeffrey ST, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  CAS  Google Scholar 

  • Leliaert F, Zhang XW, Ye NH, Malta E-j, Engelen AH, Mineur F, Verbruggen H, De Clerk O et al (2009) Identity of the Qingdao algal bloom. Phycol Res 57:147–151

    Article  Google Scholar 

  • Lemesle S, Erraud A, Mussio I, Rusig AM, Claquin P (2016) Dynamics of δ15N isotopic signatures of different intertidal macroalgal species: assessment of bioindicators of N sources in coastal areas. Mar Pollut Bull 110:470–483

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhong J, Zheng M, Zhuo P, Xu N (2018) Photoperiod mediates the effects of elevated CO2 on the growth and physiological performance in the green tide alga Ulva prolifera. Mar Environ Res 141:24–29

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zou D (2015) Responses of elevated CO2 on photosynthesis and nitrogen metabolism in Ulva lactuca (Chlorophyta) at different temperature levels. Mar Biol Res 11:1043–1052

    Article  Google Scholar 

  • Luo MB, Liu F, Xu ZL (2012) Growth and nutrient uptake capacity of two co-occurring species, Ulva prolifera and Ulva linza. Aquat Bot 100:18–24

    Article  CAS  Google Scholar 

  • Melton JT, García-Soto GC, López-Bautista JM (2016) A new record of the bloom-forming green algal species Ulva ohnoi (Ulvales, Chlorophyta) in the Caribbean Sea. Rev Chil Hist Nat 85:495–502

    Google Scholar 

  • Msuya FE, Neori A (2008) Effect of water aeration and nutrient load level on biomass yield, N uptake and protein content of the seaweed Ulva lactuca cultured in seawater tanks. J Appl Phycol 20:1021–1031

    Article  CAS  Google Scholar 

  • Müller S, Mitrovic SM (2015) Phytoplankton co-limitation by nitrogen and phosphorus in a shallow reservoir: progressing from the phosphorus limitation paradigm. Hydrobiologia 744:255–269

    Article  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) CO2SYS DOS Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN

  • Raffaelli D, Raven GJA, Poole LJ (1998) Ecological impact of green macroalgal blooms. Oceanogr Mar Biol 125:37–97

    Google Scholar 

  • Rautenberger R, Fernández PA, Strittmatter M et al (2015) Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta). Ecol Evol 5:874–888

    Article  PubMed  PubMed Central  Google Scholar 

  • Raven JA, Ball LA, Beardall J, Giordano M, Maberly SC (2005) Algae lacking carbon-concentrating mechanisms. Can J Bot 83:879–890

    Article  CAS  Google Scholar 

  • Reidenbach L (2017) Effects of ocean acidification and eutrophication on the macroalgae Ulva spp. Doctoral dissertation, California State University

  • Roleda MY, Hurd CL (2012) Seaweed responses to ocean acidification. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer, Heidelberg, pp 407–431

    Chapter  Google Scholar 

  • Smetacek V, Zingone A (2013) Green and golden seaweed tides on the rise. Nature 504:84–88

    Article  CAS  PubMed  Google Scholar 

  • Stengel DB, Conde-Álvarez R, Connan S et al (2014) Short-term effects of CO2, nutrients and temperature on three marine macroalgae under solar radiation. Aquat Biol 22:159–176

    Article  Google Scholar 

  • Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42:1105–1118

    Article  Google Scholar 

  • Wan AH, Wilkes RJ, Heesch S, Bermejo R, Johnson MP, Morrison L (2017) Assessment and characterisation of Ireland’s green tides (Ulva species). PloS ONE 12:e0169049

  • Worm B, Lotze HK, Sommer U (2001) Algal propagule banks modify competition, consumer and resource control on Baltic rocky shores. Oecologia 128:281–293

    Article  PubMed  Google Scholar 

  • Xu J, Gao K (2012) Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiol 160:1762–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Gao G, Xu J, Wu H (2017) Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment. Biogeosciences 14:671–681

    Article  CAS  Google Scholar 

  • Ye NH, Zhang XW, Mao YZ, Lian CW, Xu D, Zou J, Zhuang ZM, Wang QY (2011) ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecol Res 26:477–485

    Article  Google Scholar 

  • Young CS, Gobler CJ (2016) Ocean acidification accelerates the growth of two bloom-forming macroalgae. PloS ONE 11:e0155152

  • Young CS, Gobler CJ (2017) The organizing effects of elevated CO2 on competition among estuarine primary producers. Sci Rep-UK 7:7667

    Article  Google Scholar 

  • Zhang X, Wang H, Mao Y, Liang C, Zhuang Z, Wang Q, Ye N (2010) Somatic cells serve as a potential propagule bank of Enteromorpha prolifera forming a green tide in the Yellow Sea, China. J Appl Phycol 22:173–180

    Article  Google Scholar 

  • Zhang X, Xu D, Mao Y et al (2011) Settlement of vegetative fragments of Ulva prolifera confirmed as an important seed source for succession of a large-scale green tide bloom. Limnol Oceanog 56:233–242

    Article  Google Scholar 

  • Zhu X, Rong J, Chen H, He C, Hu W, Wang Q (2016) An informatics-based analysis of developments to date and prospects for the application of microalgae in the biological sequestration of industrial flue gas. Appl Microbiol Biot 100:2073–2082

    Article  CAS  Google Scholar 

  • Zou D (2005) Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 250:726–735

    Article  CAS  Google Scholar 

  • Zou D, Gao K (2010) Physiological responses of seaweeds to elevated atmospheric CO2 concentrations. In: Seckbach J, Einav R, Israel A (eds) Seaweeds and their role in globally changing environments. Springer, Dordrecht, pp 115–126

    Chapter  Google Scholar 

Download references

Funding

This work was financially supported by National Key Research and Development Program of China (2018YFD0900705, 2018YFD0900703), National Natural Science Foundation of China (32000404, 41976110, 41606038); Central Public-interest Scientific Institution Basal Research Fund, YSFRI, CAFS (20603022020019, 20603022019006, 2020TD27); Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (NO. 2018SDKJ0406-3); Major Scientific and Technological Innovation Project of Shandong Provincial Key Research and Development Program (2019JZZY020706); Financial Fund of the Ministry of Agriculture and Rural Affairs, P. R. of China (NFZX2018); China Agriculture Research System (CARS-50); Taishan Scholars Funding, the Young Taishan Scholars Program to D.X., and Talent Projects of Distinguished Scientific Scholars in Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naihao Ye.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 198 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xu, D., Ma, J. et al. Elevated CO2 accelerated the bloom of three Ulva species after one life cycle culture. J Appl Phycol 33, 3963–3973 (2021). https://doi.org/10.1007/s10811-021-02562-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02562-5

Keywords

Navigation