Skip to main content

Advertisement

Log in

Microalgae-cyanobacteria–based biostimulant effect on salinity tolerance mechanisms, nutrient uptake, and tomato plant growth under salt stress

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

High soil salinity is a major abiotic stress affecting the growth, nutrition, development, and productivity of crops. This study investigated the modulating effect of combined microalgae-cyanobacteria extract formulations (MEF1%, MEF5%, and MEF10%) prepared from the species Dunaliella salina, Chlorella ellipsoidea, Aphanothece sp., and Arthrospira maxima, on tomato plant growth and tolerance under four NaCl concentrations (0, 80, 120, and 150 mM). MEF5% enhanced the vegetative growth of tomato plants, characterized by higher shoot and root weight and larger leaf area. According to principal component analysis (PCA), improved plant growth was closely associated with leaf photosynthetic pigments, which was mainly due to improved osmotic adjustment and ion homeostasis. Proline accumulation was significantly enhanced by MEF5%-treatment in plants grown under 120 mM and 150 mM NaCl conditions. MEF5%-treatment also significantly improved nitrogen (N), phosphorus (P), and potassium (K+) absorption in plants grown at 80 mM and 120 mM NaCl levels. Leaf lipid peroxidation through ROS oxidative stress significantly decreased with enhanced CAT and SOD activities in MEF5%-treated plants. MEF5% triggered a significant decline in fatty acid content, indicating fatty acid transformation into other lipid forms such as alkanes, which are essential in the cuticular wax synthesis of hydric stressed plants. Enhanced K+ uptake and reduced Na+/K+ ratio in the leaves of treated plants indicate MEF’s active role in reestablishing ion homeostasis. Nutrient uptake can be improved by enhanced root biomass, which subsequently increases the roots’ surface for nutrient absorption. These results indicate that MEF stimulated plant growth and tolerance responses through (i) enhanced antioxidant enzyme activities and (ii) improved root growth and nutrient uptake. Therefore, combined microalgae-cyanobacteria formulations could be another sustainable alternative to boost nutrient uptake, growth, and crop adaptability under normal and saline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

Besides the data provided in supplementary information, the data generated during and/or analyzed during the current study is available from the corresponding author on reasonable request.

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18. 

    Article  Google Scholar 

  • Ahanger MA, Alyemeni MN, Wijaya L, Alamri SA, Alam P, Ashraf M, Ahmad P (2018) Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS ONE 13:e0202175. 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2:875–877

    Article  CAS  PubMed  Google Scholar 

  • Alcantara CG, Gonzaga NR (2020) Nutrient uptake and yield of tomato (Solanum lycopersicum) in response to vermicast and vermi-foliar application. Org Agric 10:301–307

    Article  Google Scholar 

  • Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020) Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physio Biochem 156:64–77

    Article  CAS  PubMed  Google Scholar 

  • Arroussi HE, Benhima R, Elbaouchi A, Sijilmassi B, Mernissi NE, Aafsar A, Meftah-Kadmiri I, Bendaou N, Smouni A (2018) Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). J Appl Phycol 30:2929–2941

    Article  CAS  Google Scholar 

  • Assaha DV, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    Article  PubMed  PubMed Central  Google Scholar 

  • Bargaz A, Nassar RM, Rady MM, Gaballah MS, Thompson SM, Brestic M, Schmidhalter U, Abdelhamid MT (2016) Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their P-efficiency. J Agron Crop Sci 202:497–507

    Article  CAS  Google Scholar 

  • Barone V, Baglieri A, Stevanato P, Broccanello C, Bertoldo G, Bertaggia M, Cagnin M, Pizzeghello D, Moliterni VM, Mandolino G, Fornasier F (2018) Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J Appl Phycol 30:1061–1071

    Article  CAS  Google Scholar 

  • Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernández JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24:1127–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B (2015) Seaweed extracts as biostimulants in horticulture. Sci Hortic (Amsterdam) 196:39–48

    Article  CAS  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Carillo P, Ciarmiello LF, Woodrow P, Corrado G, Chiaiese P, Rouphael Y (2020) Enhancing sustainability by improving plant salt tolerance through macro-and micro-algal biostimulants. Biology (Basel) 9:1–21

    Google Scholar 

  • Carillo P, Gibon Y (2011) PROTOCOL: Extraction and determination of glycine betaine. https://www.researchgate.net/publication/215448078_PROTOCOL_Extraction_and_determination_of_glycine_betaine/link/00c433cb4efddc3c26cab80d/download (retrieved on 20 Feb 2021)

  • Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6:48–60

    Article  Google Scholar 

  • Caverzan A, Piasecki C, Chavarria G, Stewart CN, Vargas L (2019) Defenses against ROS in crops and weeds: the effects of interference and herbicides. Int J Mol Sci 20:1086

    Article  CAS  PubMed Central  Google Scholar 

  • Chanda M joan, Merghoub N, EL Arroussi H (2019) Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants? World J Microbio. Biotechno. 35

  • Chanda MJ, Benhima R, Elmernissi N, Kasmi Y, Karim L, Sbabou L, Youssef Z, El Arroussi H (2020) Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Sci Rep 10(1):2820

    Article  Google Scholar 

  • Chiaiese P, Corrado G, Colla G, Kyriacou MC, Rouphael Y (2018) Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front Plant Sci 9:1782

    Article  PubMed  PubMed Central  Google Scholar 

  • Chun SC, Paramasivan M, Chandrasekaran M (2018) Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front Microbiol 9:2525

    Article  PubMed  PubMed Central  Google Scholar 

  • Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, Rouphael Y (2017) Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Front Plant Sci 8:2202

    Article  PubMed  PubMed Central  Google Scholar 

  • Colla G, Rouphael Y (2020) Microalgae: new source of plant biostimulants. Agronomy 10:1240

    Article  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J (2014) Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol Plant-Microbe Interact 27:503–514

    Article  CAS  PubMed  Google Scholar 

  • Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R (2015) Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol 8:190–209

    Article  CAS  PubMed  Google Scholar 

  • De Morais MG, Vaz BDS, De Morais EG, Costa JAV (2015) Biologically active metabolites synthesized by microalgae. Biomed Res. Int. 2015:835761

  • Desoky ESM, Merwad ARM, Rady MM (2018) Natural biostimulants improve saline soil characteristics and salt stressed-Sorghum performance. Commun Soil Sci Plant Anal 49:967–983

    Article  CAS  Google Scholar 

  • Elzaawely AA, Ahmed ME, Maswada HF, Xuan TD (2017) Enhancing growth, yield, biochemical, and hormonal contents of snap bean (Phaseolus vulgaris L.) sprayed with moringa leaf extract. Arch Agron Soil Sci 63:687–699

    Article  CAS  Google Scholar 

  • Farid R, Mutale-Joan C, Redouane B, Najib EM, Abderahime A, Laila S, Hicham EA (2019) Effect of microalgae polysaccharides on biochemical and metabolomics pathways related to plant defense in Solanum lycopersicum. Appl Biochem Biotechnol 188:225–240

    Article  CAS  PubMed  Google Scholar 

  • Galvan-Ampudia CS, Julkowska MM, Darwish E, Gandullo J, Korver RA, Brunoud G, Haring MA, Munnik T, Vernoux T, Testerink C (2013) Halotropism is a response of plant roots to avoid a saline environment. Curr Biol 23:2044–2050

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gonzalez J, Sommerfeld M (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28:1051–1061

    Article  PubMed  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardie M, Doyle R (2012) Measuring soil salinity. Meth Mol Biol 913:415–425

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MH, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator

    Article  CAS  PubMed Central  Google Scholar 

  • Huang H, Ullah F, Zhou DX, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang W, Hu H, Zhang S-B (2015) Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight. Front Plant Sci 6:621

    PubMed  PubMed Central  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    Article  CAS  PubMed  Google Scholar 

  • Kamthan A, Kamthan M, Chakraborty N, Chakraborty S, Datta A (2012) A simple protocol for extraction, derivatization, and analysis of tomato leaf and fruit lipophilic metabolites using GC-MS. Protocol Exchchange. https://doi.org/10.1038/protex.2012.061

    Article  Google Scholar 

  • Khan A, Numan M, Khan AL, Lee IJ, Imran M, Asaf S, Al-Harrasi A (2020) Melatonin: Awakening the defense mechanisms during plant oxidative stress. Plants 9:407

    Article  CAS  PubMed Central  Google Scholar 

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M (2012) Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide - Biol Chem 27:210–218

    Article  CAS  Google Scholar 

  • Khan W, Hiltz D, Critchley AT, Prithiviraj B (2011) Bioassay to detect Ascophyllum nodosum extract-induced cytokinin-like activity in Arabidopsis thaliana. J Appl Phycol 23:409–414

    Article  Google Scholar 

  • Latz A, Mehlmer N, Zapf S, Mueller TD, Wurzinger B, Pfister B, Csaszar E, Hedrich R, Teige M, Becker D (2013) Salt stress triggers phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs) Mol Plant 6:1274–1289

  • Leidi EO, Barragán V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernández JA, Bressan RA, Hasegawa PM, Quintero FJ, Pardo JM (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61:495–506

    Article  CAS  PubMed  Google Scholar 

  • Libutti A, Cammerino A, Monteleone M (2018) Risk Assessment of soil salinization due to tomato cultivation in Mediterranean climate conditions. Water 10:1503

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Anal Chem 1:F4.3.1–F4.3.8

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Mengel D (1995) Roots, growth and nutrient uptake. Department of Agronomy Publication # AGRY-95–08. Perdue University, West Lafayette p 8

  • Mitsuya S, Kawasaki M, Taniguchi M, Miyake H (2003) Light dependency of salinity-induced chloroplast degradation. Plant Prod Sci 6:219–223

    Article  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    Article  CAS  Google Scholar 

  • Munns R, Passioura JB, Colmer TD, Byrt CS (2020) Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol 225:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Noctor G (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rachidi F, Benhima R, Sbabou L, El Arroussi H (2020) Microalgae polysaccharides bio-stimulating effect on tomato plants: growth and metabolic distribution. Biotechnol Reports 25:e00426

    Article  Google Scholar 

  • Rahman KMA, Zhang D (2018) Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability 10:759 

    Article  Google Scholar 

  • Renuka N, Guldhe A, Prasanna R, Singh P, Bux F (2018) Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv 36:1255–1273

    Article  CAS  PubMed  Google Scholar 

  • Ricci M (2020) Justifying plant biostimulants claims for European Regulation Chair of EBIC Agriculture Committee and Agronomy Manager at Lallemand Plant Care

  • Ronga D, Biazzi E, Parati K, Carminati D, Carminati E, Tava A (2019) Microalgal biostimulants and biofertilisers in crop productions. Agronomy 9:40192

  • Shahid SA, Zaman M, Heng L (2018) Soil salinity: historical perspectives and a world overview of the problem. In: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer, Cham, pp 43–53

  • Sikder RK, Wang X, Zhang H, Gui H, Dong Q, Jin D, Song M (2020) Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in Gossypium hirsutum. Plants 9:40450

    Article  Google Scholar 

  • Smith GS, Johnston CM, Cornforth IS (1983) Comparison of nutrient solutions for growth of plants in sand culture. New Phytol 94:537–548

    Article  CAS  Google Scholar 

  • Tahjib-UI-Arif M, Sohag AA, Afrin S, Bashar KK, Afrin T, Mahamud AG, Polash MA, Hossain M, Sohel M, Taher A, Brestic M (2019) Differential response of sugar beet to long-term mild to severe salinity in a soil–pot culture. Agriculture 9:223

    Article  CAS  Google Scholar 

  • Tester M (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turkan I (2018) ROS and RNS: key signalling molecules in plants. J Exp Bot 69:3313–3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:1–12

    Article  Google Scholar 

  • Van Zelm E, Zhang Y, Testerink C (2020) Salt Tolerance Mechanisms of Plants. Annu Rev Plant Biol 71:403–433

    Article  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM (2020) Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 39:3–17

    Article  CAS  PubMed  Google Scholar 

  • Wu H (2018) Plant salt tolerance and Na+ sensing and transport. Crop J 6:215–225

    Article  Google Scholar 

  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 7:2049

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan K, Shao H, Shao C, Chen P, Zhao S, Brestic M, Chen X (2013) Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol Plant 35:2867–2878

    Article  CAS  Google Scholar 

  • Yang Y, Guo Y (2018) Unraveling salt stress signaling in plants. J Integr Plant Biol 60:796–804

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Zhang H, Song C, Zhu JK, Shabala S (2020) Mechanisms of plant responses and adaptation to soil salinity. Innov 1:100017

    Article  Google Scholar 

Download references

Funding

Special thanks for the financial support of OCP-Agribiotech BU for the realization of this project under the best conditions.

Author information

Authors and Affiliations

Authors

Contributions

HA = project conception, funding acquisition, project supervision, design of methodology and revision of the manuscript. CMJ = writing (original draft preparation, review and editing), the study of physiological parameters, analysis of results. FR = experimental work, the study of physiological and biochemical parameters and manuscript revision. HAM = experimental work and analysis of results. NM = Study of nutrient uptake using Skalar nutrient auto analyser. AA = study of metabolomics using GC–MS and manuscript revision. MB = project supervision. DM = statistical analysis, visualization of results and generation of graphs using GraphPad Prism software. LS = thesis director.

Corresponding author

Correspondence to Hicham El Arroussi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 285 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutale-joan, C., Rachidi, F., Mohamed, H.A. et al. Microalgae-cyanobacteria–based biostimulant effect on salinity tolerance mechanisms, nutrient uptake, and tomato plant growth under salt stress. J Appl Phycol 33, 3779–3795 (2021). https://doi.org/10.1007/s10811-021-02559-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02559-0

Keywords

Navigation