Journal of Applied Phycology

, Volume 31, Issue 2, pp 1035–1046 | Cite as

Exploring an isolate of the oleaginous alga Micractinium inermum for lipid production: molecular characterization and physiochemical analysis under multiple growth conditions

  • Meicheng Shi
  • Hehong Wei
  • Qiuyi Chen
  • Xiaofei Wang
  • Wenguang Zhou
  • Jin LiuEmail author


Molecular characterization based on the internal transcribed spacer 2 (ITS2) sequence identified Micractinium inermum JL1, a local isolate of green alga capable of growing robustly under photoautotrophic, mixotrophic, and heterotrophic culture modes. Physiochemical analyses of the alga revealed great variations in growth, lipid content, oleic acid abundance, and productivities of lipids and triacylglycerol (TAG) under various culture conditions including nitrogen concentrations, phosphorus concentrations, light intensities, salinity levels, and glucose concentrations with or without light illumination. The carbon shunt from starch and to a lesser extent from membrane lipids likely contributed to the TAG accumulation. Noteworthily, salt supplementation promoted TAG content and productivity by ~ 88% and ~ 55%, respectively. The alga could accumulate ~ 52% lipids per dry weight and achieved a high lipid productivity of 0.68 g L−1 day−1. C18:1 percentage, a biodiesel quality indicator, reached ~ 50%, and correlated well with TAG contents in a positive manner, demonstrating the feasibility of using C18:1 percentage for TAG quantification thereby avoiding time- and labor-intensive analysis. These results together indicate the potential of M. inermum JL1 as a lipid producer for future exploration.


Algae Chlorophyta Lipid Oleic acid Triacylglycerol Biodiesel 



This study was partially funded by grants from the National Youth Thousand Talents Program, Peking University CCUS project supported by BHP Billiton, National Undergraduate Innovation Experiment Project, and Double-First Class Initiative of Peking University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226CrossRefGoogle Scholar
  2. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  3. de Jaeger L, Verbeek RE, Draaisma RB, Martens DE, Springer J, Eggink G, Wijffels RH (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol Biofuels 7:69CrossRefGoogle Scholar
  4. Endo H, Sansawa H, Nakajima K (1977) Studies on Chlorella regularis, heterotrophic fast-growing strain II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol 18:199–205Google Scholar
  5. Griffiths M, Harrison S (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507CrossRefGoogle Scholar
  6. Guccione A, Biondi N, Sampietro G, Rodolfi L, Bassi N, Tredici M (2014) Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnol Biofuels 7:84CrossRefGoogle Scholar
  7. Hirai K, Hayashi T, Hasegawa Y, Sato A, Tsuzuki M, Sato N (2016) Hyperosmosis and its combination with nutrient-limitation are novel environmental stressors for induction of triacylglycerol accumulation in cells of Chlorella kessleri. Sci Rep 6:25825CrossRefGoogle Scholar
  8. Ho S-H, Nakanishi A, Kato Y, Yamasaki H, Chang J-S, Misawa N, Hirose Y, Minagawa J, Hasunuma T, Kondo A (2017) Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Sci Rep 7:45471CrossRefGoogle Scholar
  9. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefGoogle Scholar
  10. Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW, Park MS, Yang J-W (2013) Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv 31:862–876CrossRefGoogle Scholar
  11. Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766CrossRefGoogle Scholar
  12. Krienitz L, Hegewald EH, Hepperle D, Huss VAR, Rohr T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43:529–542CrossRefGoogle Scholar
  13. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  14. Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268CrossRefGoogle Scholar
  15. Liu J, Huang J, Fan KW, Jiang Y, Zhong Y, Sun Z, Chen F (2010) Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresour Technol 101:8658–8663CrossRefGoogle Scholar
  16. Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110CrossRefGoogle Scholar
  17. Liu J, Sun Z, Zhong Y, Huang J, Hu Q, Chen F (2012a) Stearoyl-acyl carrier protein desaturase gene from the oleaginous microalga Chlorella zofingiensis: cloning, characterization and transcriptional analysis. Planta 236:1665–1676CrossRefGoogle Scholar
  18. Liu J, Huang J, Jiang Y, Chen F (2012b) Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technol 107:393–398CrossRefGoogle Scholar
  19. Liu J, Sommerfeld M, Hu Q (2013) Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production. Appl Microbiol Biotechnol 97:4785–4798CrossRefGoogle Scholar
  20. Liu J, Sun Z, Chen F (2014a) Heterotrophic production of algal oils. In: Pandey A, Lee DJ, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, San Diego, pp 111–142CrossRefGoogle Scholar
  21. Liu J, Gerken H, Li Y (2014b) Single-tube colony PCR for DNA amplification and transformant screening of oleaginous microalgae. J Appl Phycol 26:1719–1726CrossRefGoogle Scholar
  22. Liu J, Mao X, Zhou W, Guarnieri MT (2016a) Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis. Bioresour Technol 214:319–327CrossRefGoogle Scholar
  23. Liu J, Han D, Yoon K, Hu Q, Li Y (2016b) Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis. Plant J 86:3–19CrossRefGoogle Scholar
  24. Ma X, Liu J, Liu B, Chen T, Yang B, Chen F (2016) Physiological and biochemical changes reveal stress-associated photosynthetic carbon partitioning into triacylglycerol in the oleaginous marine alga Nannochloropsis oculata. Algal Res 16:28–35CrossRefGoogle Scholar
  25. Mallick N, Bagchi SK, Koley S, Singh AK (2016) Progress and challenges in microalgal biodiesel production. Front Microbiol 7:1019Google Scholar
  26. Meijer EA, Wijffels RH (1998) Development of a fast, reproducible and effective method for the extraction and quantification of proteins of micro-algae. Biotechnol Tech 12:353–358CrossRefGoogle Scholar
  27. Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59CrossRefGoogle Scholar
  28. Park S, Kim J, Park Y, Son S, Cho S, Kim C, Lee T (2017) Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium. Bioresour Technol 234:432–438CrossRefGoogle Scholar
  29. Park S, Kim J, Park Y, Kim S, Cho S, Yu J, Kang C, Lee T (2018) Comparison of trophic modes to maximize biomass and lipid productivity of Micractinium inermum NLP-F014. Biotechnol Bioprocess Eng 23:238–245CrossRefGoogle Scholar
  30. Pribyl P, Cepak V, Zachleder V (2012) Production of lipids in 10 strains of Chlorella and Parachlorella and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol 94:549–561CrossRefGoogle Scholar
  31. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501CrossRefGoogle Scholar
  32. Recht L, Zarka A, Boussiba S (2012) Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl Microbiol Biotechnol 94:1495–1503CrossRefGoogle Scholar
  33. Sforza E, Ramos-Tercero EA, Gris B, Bettin F, Milani A, Bertucco A (2014) Integration of Chlorella protothecoides production in wastewater treatment plant: from lab measurements to process design. Algal Res 6:223–233CrossRefGoogle Scholar
  34. Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production—a review. Renew Sust Energ Rev 16:2347–2353CrossRefGoogle Scholar
  35. Sirisansaneeyakul S, Singhasuwan S, Choorit W, Phoopat N, Garcia J, Chisti Y (2011) Photoautotrophic production of lipids by some Chlorella strains. Mar Biotechnol 13:928–941CrossRefGoogle Scholar
  36. Smith RT, Bangert K, Wilkinson SJ, Gilmour DJ (2015) Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractinium inermum. Biomass Bioenergy 82:73–86CrossRefGoogle Scholar
  37. Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sust Energ Rev 16:4316–4342CrossRefGoogle Scholar
  38. Sun Z, Zhou Z-g, Gerken H, Chen F, Liu J (2015) Screening and characterization of oleaginous Chlorella strains and exploration of photoautotrophic Chlorella protothecoides for oil production. Bioresour Technol 184:53–62CrossRefGoogle Scholar
  39. Sun Z, Wei H, Zhou Z-G, Ashokkumar M, Liu J (2018) Screening of Isochrysis strains and utilization of a two-stage outdoor cultivation strategy for algal biomass and lipid production. Appl Biochem Biotechnol 185:1100–1117CrossRefGoogle Scholar
  40. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  41. Tanner W (2000) The Chlorella hexose/H+-symporters. Int Rev Cytol 200:101–141CrossRefGoogle Scholar
  42. Vonlanthen S, Dauvillée D, Purton S (2015) Evaluation of novel starch-deficient mutants of Chlorella sorokiniana for hyper-accumulation of lipids. Algal Res 12:109–118CrossRefGoogle Scholar
  43. Wei H, Shi Y, Ma X, Pan Y, Hu H, Li Y, Luo M, Gerken H, Liu J (2017) A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica. Biotechnol Biofuels 10:174CrossRefGoogle Scholar
  44. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799CrossRefGoogle Scholar
  45. Xin Y, Lu Y, Lee Y-Y, Wei L, Jia J, Wang Q, Wang D, Bai F, Hu H, Hu Q, Liu J, Li Y, Xu J (2017) Producing designer oils in industrial microalgae by rational modulation of co-evolving type-2 diacylglycerol acyltransferases. Mol Plant 10:1523–1539CrossRefGoogle Scholar
  46. Xiong W, Gao C, Yan D, Wu C, Wu Q (2010) Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 101:2287–2293CrossRefGoogle Scholar
  47. Zhou W, Wang J, Chen P, Ji C, Kang Q, Lu B, Li K, Liu J, Ruan R (2017) Bio-mitigation of carbon dioxide using microalgal systems: advances and perspectives. Renew Sust Energ Rev 76:1163–1175CrossRefGoogle Scholar
  48. Zhu S, Wang Y, Xu J, Shang C, Wang Z, Xu J, Yuan Z (2015) Luxury uptake of phosphorus changes the accumulation of starch and lipid in Chlorella sp. under nitrogen depletion. Bioresour Technol 198:165–171CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Meicheng Shi
    • 1
  • Hehong Wei
    • 1
  • Qiuyi Chen
    • 1
  • Xiaofei Wang
    • 1
  • Wenguang Zhou
    • 2
  • Jin Liu
    • 1
    Email author
  1. 1.Laboratory for Algae Biotechnology and Innovation, College of EngineeringPeking UniversityBeijingChina
  2. 2.School of Resources, Environmental and Chemical Engineering and MOE Biomass Engineering Research CenterNanchang UniversityNanchangChina

Personalised recommendations