Skip to main content
Log in

Exploring an isolate of the oleaginous alga Micractinium inermum for lipid production: molecular characterization and physiochemical analysis under multiple growth conditions

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Molecular characterization based on the internal transcribed spacer 2 (ITS2) sequence identified Micractinium inermum JL1, a local isolate of green alga capable of growing robustly under photoautotrophic, mixotrophic, and heterotrophic culture modes. Physiochemical analyses of the alga revealed great variations in growth, lipid content, oleic acid abundance, and productivities of lipids and triacylglycerol (TAG) under various culture conditions including nitrogen concentrations, phosphorus concentrations, light intensities, salinity levels, and glucose concentrations with or without light illumination. The carbon shunt from starch and to a lesser extent from membrane lipids likely contributed to the TAG accumulation. Noteworthily, salt supplementation promoted TAG content and productivity by ~ 88% and ~ 55%, respectively. The alga could accumulate ~ 52% lipids per dry weight and achieved a high lipid productivity of 0.68 g L−1 day−1. C18:1 percentage, a biodiesel quality indicator, reached ~ 50%, and correlated well with TAG contents in a positive manner, demonstrating the feasibility of using C18:1 percentage for TAG quantification thereby avoiding time- and labor-intensive analysis. These results together indicate the potential of M. inermum JL1 as a lipid producer for future exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • de Jaeger L, Verbeek RE, Draaisma RB, Martens DE, Springer J, Eggink G, Wijffels RH (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol Biofuels 7:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo H, Sansawa H, Nakajima K (1977) Studies on Chlorella regularis, heterotrophic fast-growing strain II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol 18:199–205

    CAS  Google Scholar 

  • Griffiths M, Harrison S (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Guccione A, Biondi N, Sampietro G, Rodolfi L, Bassi N, Tredici M (2014) Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnol Biofuels 7:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirai K, Hayashi T, Hasegawa Y, Sato A, Tsuzuki M, Sato N (2016) Hyperosmosis and its combination with nutrient-limitation are novel environmental stressors for induction of triacylglycerol accumulation in cells of Chlorella kessleri. Sci Rep 6:25825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho S-H, Nakanishi A, Kato Y, Yamasaki H, Chang J-S, Misawa N, Hirose Y, Minagawa J, Hasunuma T, Kondo A (2017) Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Sci Rep 7:45471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW, Park MS, Yang J-W (2013) Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv 31:862–876

    Article  CAS  PubMed  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766

    Article  CAS  Google Scholar 

  • Krienitz L, Hegewald EH, Hepperle D, Huss VAR, Rohr T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43:529–542

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Huang J, Fan KW, Jiang Y, Zhong Y, Sun Z, Chen F (2010) Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresour Technol 101:8658–8663

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Sun Z, Zhong Y, Huang J, Hu Q, Chen F (2012a) Stearoyl-acyl carrier protein desaturase gene from the oleaginous microalga Chlorella zofingiensis: cloning, characterization and transcriptional analysis. Planta 236:1665–1676

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Huang J, Jiang Y, Chen F (2012b) Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technol 107:393–398

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Sommerfeld M, Hu Q (2013) Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production. Appl Microbiol Biotechnol 97:4785–4798

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Sun Z, Chen F (2014a) Heterotrophic production of algal oils. In: Pandey A, Lee DJ, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, San Diego, pp 111–142

    Chapter  Google Scholar 

  • Liu J, Gerken H, Li Y (2014b) Single-tube colony PCR for DNA amplification and transformant screening of oleaginous microalgae. J Appl Phycol 26:1719–1726

    Article  CAS  Google Scholar 

  • Liu J, Mao X, Zhou W, Guarnieri MT (2016a) Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis. Bioresour Technol 214:319–327

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Han D, Yoon K, Hu Q, Li Y (2016b) Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis. Plant J 86:3–19

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Liu J, Liu B, Chen T, Yang B, Chen F (2016) Physiological and biochemical changes reveal stress-associated photosynthetic carbon partitioning into triacylglycerol in the oleaginous marine alga Nannochloropsis oculata. Algal Res 16:28–35

    Article  Google Scholar 

  • Mallick N, Bagchi SK, Koley S, Singh AK (2016) Progress and challenges in microalgal biodiesel production. Front Microbiol 7:1019

    PubMed  PubMed Central  Google Scholar 

  • Meijer EA, Wijffels RH (1998) Development of a fast, reproducible and effective method for the extraction and quantification of proteins of micro-algae. Biotechnol Tech 12:353–358

    Article  CAS  Google Scholar 

  • Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kim J, Park Y, Son S, Cho S, Kim C, Lee T (2017) Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium. Bioresour Technol 234:432–438

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kim J, Park Y, Kim S, Cho S, Yu J, Kang C, Lee T (2018) Comparison of trophic modes to maximize biomass and lipid productivity of Micractinium inermum NLP-F014. Biotechnol Bioprocess Eng 23:238–245

    Article  CAS  Google Scholar 

  • Pribyl P, Cepak V, Zachleder V (2012) Production of lipids in 10 strains of Chlorella and Parachlorella and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol 94:549–561

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Recht L, Zarka A, Boussiba S (2012) Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl Microbiol Biotechnol 94:1495–1503

    Article  CAS  PubMed  Google Scholar 

  • Sforza E, Ramos-Tercero EA, Gris B, Bettin F, Milani A, Bertucco A (2014) Integration of Chlorella protothecoides production in wastewater treatment plant: from lab measurements to process design. Algal Res 6:223–233

    Article  Google Scholar 

  • Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production—a review. Renew Sust Energ Rev 16:2347–2353

    Article  CAS  Google Scholar 

  • Sirisansaneeyakul S, Singhasuwan S, Choorit W, Phoopat N, Garcia J, Chisti Y (2011) Photoautotrophic production of lipids by some Chlorella strains. Mar Biotechnol 13:928–941

    Article  CAS  PubMed  Google Scholar 

  • Smith RT, Bangert K, Wilkinson SJ, Gilmour DJ (2015) Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractinium inermum. Biomass Bioenergy 82:73–86

    Article  CAS  Google Scholar 

  • Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sust Energ Rev 16:4316–4342

    Article  CAS  Google Scholar 

  • Sun Z, Zhou Z-g, Gerken H, Chen F, Liu J (2015) Screening and characterization of oleaginous Chlorella strains and exploration of photoautotrophic Chlorella protothecoides for oil production. Bioresour Technol 184:53–62

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Wei H, Zhou Z-G, Ashokkumar M, Liu J (2018) Screening of Isochrysis strains and utilization of a two-stage outdoor cultivation strategy for algal biomass and lipid production. Appl Biochem Biotechnol 185:1100–1117

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tanner W (2000) The Chlorella hexose/H+-symporters. Int Rev Cytol 200:101–141

    Article  CAS  PubMed  Google Scholar 

  • Vonlanthen S, Dauvillée D, Purton S (2015) Evaluation of novel starch-deficient mutants of Chlorella sorokiniana for hyper-accumulation of lipids. Algal Res 12:109–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei H, Shi Y, Ma X, Pan Y, Hu H, Li Y, Luo M, Gerken H, Liu J (2017) A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica. Biotechnol Biofuels 10:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  PubMed  Google Scholar 

  • Xin Y, Lu Y, Lee Y-Y, Wei L, Jia J, Wang Q, Wang D, Bai F, Hu H, Hu Q, Liu J, Li Y, Xu J (2017) Producing designer oils in industrial microalgae by rational modulation of co-evolving type-2 diacylglycerol acyltransferases. Mol Plant 10:1523–1539

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Gao C, Yan D, Wu C, Wu Q (2010) Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 101:2287–2293

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Wang J, Chen P, Ji C, Kang Q, Lu B, Li K, Liu J, Ruan R (2017) Bio-mitigation of carbon dioxide using microalgal systems: advances and perspectives. Renew Sust Energ Rev 76:1163–1175

    Article  CAS  Google Scholar 

  • Zhu S, Wang Y, Xu J, Shang C, Wang Z, Xu J, Yuan Z (2015) Luxury uptake of phosphorus changes the accumulation of starch and lipid in Chlorella sp. under nitrogen depletion. Bioresour Technol 198:165–171

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was partially funded by grants from the National Youth Thousand Talents Program, Peking University CCUS project supported by BHP Billiton, National Undergraduate Innovation Experiment Project, and Double-First Class Initiative of Peking University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Wei, H., Chen, Q. et al. Exploring an isolate of the oleaginous alga Micractinium inermum for lipid production: molecular characterization and physiochemical analysis under multiple growth conditions. J Appl Phycol 31, 1035–1046 (2019). https://doi.org/10.1007/s10811-018-1653-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1653-5

Keywords

Navigation