Skip to main content

Advertisement

Log in

Isolation, Identification, and Evaluation of the Lipid Content of Desmodesmus communis from the Ecuadorian Amazon

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate biomass generation and determine the total lipid content of a microalgae isolated from a lagoon of the Ecuadorian Amazon. The morphological identification of the isolated microalgae was done through bibliographic comparisons and molecular identification by PCR followed by DNA sequencing and phylogenetic analysis. A 10-day batch culture was operated in 1-L glass bottles, and nutrient removal was determined daily. After harvesting, biomass was centrifuged to remove most of the water content. Half of the obtained biomass was kept wet and the other half was dried for further analysis. Cell growth, optical density, and dry weight were measured during cultivation time. In addition, total lipid and free fatty acid (FFA) percentages were evaluated. Removal of chemical oxygen demand (COD), nitrates (NO3), and phosphates (PO43−) was 33.12%, 67.77%, and 76.73%, respectively. The biomass concentration was 2.19 ± 0.12 g/L with a productivity of 0.22 g/L per day. The best extraction percentages of total lipids and FFA were 18.43% and 61.46%, respectively. Although the results of lipids and FFA do not reach the required limits, the productivity of biomass and lipids is comparable with species that are cultivated for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Abbreviations

COD:

Chemical oxygen demand

FFA:

Free fatty acids

BG11:

Blue-Green Medium

ITS:

Internal transcribed spacer

PCR:

Polymerase chain reaction

NCBI:

National Center for Biotechnology Information

BLAST:

Basic Local Alignment Search Tool

HPLC:

High-performance liquid chromatography

TN:

Total nitrogen

TP:

Total phosphorous

TOC:

Total organic carbon

References

  1. Al-Ghussain L (2019) Global warming: review on driving forces and mitigation. Environ Prog Sus Energy 38:13–21. https://doi.org/10.1002/ep.13041

    Article  CAS  Google Scholar 

  2. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energy Strategy Revs 24:38–50. https://doi.org/10.1016/j.esr.2019.01.006

    Article  Google Scholar 

  3. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17(1):1–21. https://doi.org/10.1186/s12934-018-0879-x

    Article  Google Scholar 

  4. Ghasemi Y, Rasoul-Amini S, Naseri AT et al (2012) Microalgae biofuel potentials (Review). Appl Biochem Microbiol 48:126–144. https://doi.org/10.1134/S0003683812020068

    Article  CAS  Google Scholar 

  5. Correa DF, Beyer HL, Possingham HP, Thomas-Hall SR, Schenk PM (2017) Biodiversity impacts of bioenergy production: microalgae vs. first generation biofuels. Renew Sus Energy Rev 74:1131–1146. https://doi.org/10.1016/j.rser.2017.02.068

    Article  Google Scholar 

  6. Nanda S, Rana R, Sarangi PK, Dalai AK, Kozinski JA (2018) A broad introduction to first-, second-, and third-generation biofuels. In: Sarangi P, Nanda S, Mohanty P (eds). Recent advancements in biofuels and bioenergy utilization. Springer. https://doi.org/10.1007/978-981-13-1307-3_1

  7. Chowdhury H, Loganathan B (2019) Third-generation biofuels from microalgae: a review. Curr Opin in Green Sus Chem 20:39–44. https://doi.org/10.1016/j.cogsc.2019.09.003

    Article  Google Scholar 

  8. Guamán M, González N (2016) Catalog of freshwater microalgae and cyanobacteria from Ecuador. Corporation, Energy Biotechnology Laboratory, pp 1–8

    Google Scholar 

  9. Ananthi V, Raja R, Carvalho IS, Brindhadevi K, Pugazhendhi AAA (2021) A realistic scenario on microalgae based biodiesel production: third generation biofuel. Fuel 284:118965. https://doi.org/10.1016/j.fuel.2020.118965

    Article  CAS  Google Scholar 

  10. Debnath C, Bandyopadhyay TK, Bhunia B, Mishra U, Narayanasamy S, Muthuraj M (2021) Microalgae: sustainable resource of carbohydrates in third-generation biofuel production. Renew Sus Energy Revs 150:111464. https://doi.org/10.1016/j.rser.2021.111464

    Article  CAS  Google Scholar 

  11. Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin in Biotechnol 23(3):346–351. https://doi.org/10.1016/j.copbio.2011.10.013

    Article  CAS  Google Scholar 

  12. Brindhadevi K, Mathimani T, Rene ER, Shanmugam S, Lan Chi NT, Pugazhendhi A (2021) Impact of cultivation conditions on the biomass and lipid in microalgae with an emphasis on biodiesel. Fuel 284:119058. https://doi.org/10.1016/j.fuel.2020.119058

    Article  CAS  Google Scholar 

  13. Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew and Sustainable Energy Rev 50:431–444. https://doi.org/10.1016/j.rser.2015.05.024

    Article  CAS  Google Scholar 

  14. Park JBK, Craggs RJ, Shilton AN (2011) Recycling algae to improve species control and harvest efficiency from a high rate algal pond. Water Revs 45(20):6637–6649. https://doi.org/10.1016/j.watres.2011.09.042

    Article  CAS  Google Scholar 

  15. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Ren Sus Energy Revs 14(1):217–232. https://doi.org/10.1016/j.rser.2009.07.020

    Article  CAS  Google Scholar 

  16. Chen L, Liu T, Zhang W, Chen X, Wang J (2012) Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour Technol 111:208–214. https://doi.org/10.1016/j.biortech.2012.02.033

    Article  CAS  PubMed  Google Scholar 

  17. Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Mohammed F (2014) Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass and Bioenergy 66. https://doi.org/10.1016/j.biombioe.2014.02.034

  18. Medrano-Barboza J, Aguirre-Bravo AA, Encalada-Rosales P, Yerovi R, Ramírez-Iglesias JR (2021) Uso de aguas residuales de porcicultura y faenamiento para el crecimiento y obtención de biomasa algal de Chlorella vulgaris. Bionatura. https://doi.org/10.21931/rb/2021.06.02.24

  19. Suparmaniam U, Man KL, Yoshimitsu U, Wei Lim J, Keat Teong L, Siew HS (2019) Insights into the microalgae cultivation technology and harvesting process for biofuel production: a review. Renew Sus Energy Revs 115:109361. https://doi.org/10.1016/j.rser.2019.109361

    Article  CAS  Google Scholar 

  20. Pan Y, Alam MA, Wang Z, Huang D, Hu K, Chen H, Yuan Z (2017) One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent. Bioresour Technol 238:157–163. https://doi.org/10.1016/j.biortech.2017.04.038

    Article  CAS  PubMed  Google Scholar 

  21. Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci & Technol 43:17. https://doi.org/10.1021/es900705j

    Article  CAS  Google Scholar 

  22. Rocca S, Agostini A, Giuntoli J, Marelli L (2015) Biofuels from algae: technology options, energy balance and GHG emissions: insights from a literature review. EUR 27582. Luxembourg (Luxembourg). https://doi.org/10.2790/125847

  23. Komolafe O, Velasquez Orta SB, Monje-Ramirez I, Noguez IY, Harvey AP, Orta Ledesma MT (2014) Biodiesel production from indigenous microalgae grown in wastewater. Bioresource Technol 154:297–304. https://doi.org/10.1016/j.biortech.2013.12.048

    Article  CAS  Google Scholar 

  24. Castelo JG (2018) Effect of nitrogen consumption of the microalgae Desmodesmus communis on biochemical composition, biomass productivity, bacterial community and telomere length. Northwest Biological Research Center. http://dspace.cibnor.mx:8080/handle/123456789/1732

  25. Rawat I, Kumar RR, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large-scale production. Appl Energy 103:444–467. https://doi.org/10.1016/j.apenergy.2012.10.004

    Article  CAS  Google Scholar 

  26. Vega-Quezada C, Blanco M, Romero H (2017) Synergies between agriculture and bioenergy in Latin American countries: a circular economy strategy for bioenergy production in Ecuador. New Biotech 39:81–89

    Article  CAS  Google Scholar 

  27. Akgül F (2020) Effects of nitrogen concentration on growth, biomass, and biochemical composition of Desmodesmus communis (E Hegewald). Preparative Biochem & Biotech 50(1):98–105. https://doi.org/10.1080/10826068.2019.1697884

    Article  CAS  Google Scholar 

  28. Andersen RA (2005) Algal culturing techniques. Elsevier

    Google Scholar 

  29. Clarke A, Eberhardt C (2002) Microscopy techniques for materials science. Woodhead Publishing

    Book  Google Scholar 

  30. Bica A, Barbu-Tudoran B, Drugǎ B, Coman C, Nicoarǎ A, Szöke-Nagy T & Dragoş N (2012) Desmodesmus Communis (Chlorophyta) from Romanian freshwaters: coenobial morphology and molecular taxonomy based on the ITS2 of new isolates. ResearchGate 17(1).

  31. Hentschke GS, Torgan LC (2010) Desmodesmus e Scenedesmus (Scenedesmaceae, Sphaeropleales, Chlorophyceae) em ambientes aquáticos na Planície Costeira do Rio Grande do Sul. Brasil Rodriguésia 61(4):585–601. https://doi.org/10.1590/2175-7860201061403

    Article  Google Scholar 

  32. Guiry M (2020) AlgaeBase. Worldwide Electronic Publication, National University of Ireland, Galway. www.algaebase.org

  33. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18(1):315–322

    Google Scholar 

  34. Moro CV, Crouzet O, Rasconi S, Thouvenot A, Coffe G, Batisson I, Bohatier J (2009) New design strategy for development of specific primer sets for PCR-based detection of Chlorophyceae and Bacillariophyceae in environmental samples. Appl Environ Microbiol 75(17):5729–5733. https://doi.org/10.1128/AEM.00509-09

    Article  CAS  PubMed  Google Scholar 

  35. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stecher G, Tamura K, Kumar S (2020) Molecular evolutionary genetics analysis (MEGA) for macOS. Mol Biol Evol. https://doi.org/10.1093/molbev/msz312

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bastidas O (2011) Cell count with hematocytometer. Technical Note-Neubauer Chamber Cell Counting. 1–6.

  38. Sun X, Li P, Liu Y, Turaib A, Cheng Z (2019) Strategies for enhanced lipid production of Desmodesmus sp mutated by atmospheric and room temperature plasma with a new efficient screening method. J of Clean Prod 250:119509. https://doi.org/10.1016/j.jclepro.2019.119509

    Article  CAS  Google Scholar 

  39. Arredondo-Vega BO, Voltolina D (2007) Determination of dry weight and organic and inorganic content. Methods and Analytical Tools in the Evaluation of Microalgal Biomass 23–26.

  40. HACH Company. Phosphorus, reactive (Orthophosphate): molybdovanadate method-reagent solution or AccuVac® Ampuls - Method 10127.

  41. HACH Company. Oxygen demand, chemical: USEPA Reactor Digestion Method. Method 8000. DOC316.53.01099

  42. HACH Company. Nitrate: cadmium reduction method-Powder Pillow or AccuVac® Ampuls - Method 8039.

  43. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Canadian J of Biochem and Physiol 37:8. https://doi.org/10.1139/o59-099

    Article  Google Scholar 

  44. Tanzi CD, Vian MA, Chemat F (2013) New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process. Biosource Technol 134:271–275. https://doi.org/10.1016/j.biortech.2013.01.168

    Article  CAS  Google Scholar 

  45. Santoso CA, Takarina ND, Ambarsari H, Prihantini NB (2020) Effect of hydrocarbon-polluted seawater on the cell density of microalgae Scenedesmus vacuolatus Shihira & Krauss. Microbiology Indonesia 14(3):4–4

    Google Scholar 

  46. Hegewald E (2000) New combinations in the genus Desmodesmus (Chlorophyceae, Scenedesmaceae). Algol Stud 96:1–18. https://doi.org/10.1127/algol_stud/96/2000/1

    Article  Google Scholar 

  47. Lortou U, Gkelis S (2019) Polyphasic taxonomy of green algae strains isolated from Mediterranean freshwaters. J of Biological Res-Thessaloniki 26(1):1–12. https://doi.org/10.1186/s40709-019-0105-y

    Article  Google Scholar 

  48. Sen B, Alp MT, Sonmez F, Kocer MAT, Canpolat O (2013) Relationship of algae to water pollution and wastewater treatment. Water Treat 335-354. https://doi.org/10.5772/51927

  49. Costa JA, De Souza JP, Teixeira AP, Nabout JC, Carneiro FM, Estadual U, Ueg DG, Jardim B, Horizonte N (2018) Review article Eutrophication in aquatic ecosystems: a scientometric study Eutrofização em ecossistemas aquáticos : um estudo cienciométrico. Acta Limnologica Brasiliensia, 30(2). https://doi.org/10.1590/S2179-975X3016

  50. Vanags J, Kunga L, Dubencovs K, Galvanauskas V, Balode M, Grigs O (2014) The effect of shaking, CO2 concentration and light intensity on biomass growth of green microalgae Desmodesmus communis. Environ Res, Eng and Management 70(4):73–79. https://doi.org/10.5755/j01.erem.70.4.8437

    Article  Google Scholar 

  51. Hernández-Pérez A, Labbé JI (2014) Microalgae, cultivation and benefits. J of Marine Biology and Oceanography 49(2):157–173. https://doi.org/10.4067/S0718-19572014000200001

    Article  Google Scholar 

  52. Hammouda O, Gaber A, Abdelraouf N (1995) Microalgae and wastewater treatment. Ecotoxicol Environ Saf 31(3):205–210. https://doi.org/10.1006/eesa.1995.1064

    Article  CAS  PubMed  Google Scholar 

  53. Montaño San Agustin D, Orta Ledesma M, Monje Ramírez I, Yánez Noguez I, Luna Pabello V, Velasquez-Orta SB (2022) A non-sterile heterotrophic microalgal process for dual biomass production and carbon removal from swine wastewater. Renew Energy 181:592–603. https://doi.org/10.1016/j.renene.2021.09.028

    Article  CAS  Google Scholar 

  54. Lau PS, Tam NFY, Wong YS (1996) Wastewater nutrients removal by Chlorella vulgaris: optimization through acclimation. Environ Technol 17(2):183–189. https://doi.org/10.1080/09593331708616375

    Article  CAS  Google Scholar 

  55. Medrano-Barboza J, Herrera-Rengifo K, Aguirre-Bravo A, Ramírez-Iglesias JR, Rodríguez R, Morales V (2022) Pig slaughterhouse wastewater: medium culture for microalgae biomass generation as raw material in biofuel industries. Water 14(19):3016. https://doi.org/10.3390/w14193016

    Article  CAS  Google Scholar 

  56. Udayan A, Pandey AK, Sirohi R et al (2022) Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochem Rev. https://doi.org/10.1007/s11101-021-09784-y

    Article  PubMed  PubMed Central  Google Scholar 

  57. Calijuri ML, Abrantes Silva T, Barbosa Magalhães I, de Paula A, Pereira AS, Marangon BB, Rodrigues de Assis L, Ferreira Lorentz J (2022) Bioproducts from microalgae biomass: technology, sustainability, challenges and opportunities. Chemosphere 305:135508. https://doi.org/10.1016/j.chemosphere.2022.135508

    Article  CAS  PubMed  Google Scholar 

  58. Sánchez-Bayo A, López-Chicharro D, Morales V, Espada JJ, Puyol D, Martínez F, Astals S, Vicente G, Bautista LF, Rodríguez R (2020) Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: a biorefinery approach. Renew Energy 146:188–195. https://doi.org/10.1016/j.renene.2019.06.148

    Article  CAS  Google Scholar 

  59. Chaudhary R, Khattar JIS, Singh DP (2014) Microalgae as feedstock for biofuel: biomass yield, lipid content and fatty acid composition as selection criteria. Intl J Pow Renew Energ Sys 1:62–71

    Google Scholar 

  60. Xia L, Song S, He Q, Yang H, Hu C (2014) Selection of microalgae for biodiesel production in a scalable outdoor photobioreactor in north China. Bioresource Technol 174:274–280. https://doi.org/10.1016/j.biortech.2014.10.008

    Article  CAS  Google Scholar 

  61. Ganesh Saratale R, Kumar Ponnusamy V, Banu Jeyakumar R, Sirohi R, Piechota G, Shobana S, Dharmaraja J, Lay C-H, Saratale GD, Seung Shin H, Ashokkumar V (2022) Microalgae cultivation strategies using cost–effective nutrient sources: recent updates and progress towards biofuel production. Bioresource Technol 361:127691. https://doi.org/10.1016/j.biortech.2022.127691

    Article  CAS  Google Scholar 

  62. Krohn BJ, McNeff CV, Yan B, Nowlan D (2011) Production of algae-based biodiesel using the continuous catalytic Mcgyan® process. Bioresource technol 102(1):94–100. https://doi.org/10.1016/j.biortech.2010.05.035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the help provided by the personnel of the Limoncocha Biological Reserve during the collection of water samples.

Funding

This work was supported by the DII project P101617_2.2 of the SEK International University, Ecuador; other materials and equipment were donated by the Corporation for Energy Research of Ecuador.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by Paula Encalada; the morphological identification was performed by Jennifer Moyón. Molecular and phylogenetic analysis were performed by José Rubén Ramírez and Juan Carlos Navarro. Analysis of data was performed by Johanna Medrano and Alberto Aguirre. The first draft of the manuscript was written, reviewed, and edited by Johanna Medrano and Paula Encalada. The manuscript was reviewed by all authors, who commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Medrano-Barboza Johanna.

Ethics declarations

Competing Interests

Paula Encalada received travel support from SEK International University to the Limoncocha Biological Reserve to sample collection. Jennifer Moyón received financial support as an honorary consultant from SEK International University. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 251 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paula, ER., Johanna, MB., Alberto, AB. et al. Isolation, Identification, and Evaluation of the Lipid Content of Desmodesmus communis from the Ecuadorian Amazon. Bioenerg. Res. 16, 1789–1800 (2023). https://doi.org/10.1007/s12155-022-10543-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10543-w

Keywords

Navigation