Skip to main content
Log in

Effects of drying on the nutrient content and physico-chemical and sensory characteristics of the edible kelp Saccharina latissima

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The effects of convective air-drying at 25, 40, and 70 °C and freeze-drying on the quality of the edible kelp Saccharina latissima to be used for food were investigated. Based on the analysis of the carbohydrate and amino acid profiles, as well as polyphenol, fucoxanthin, and ash contents, no significant differences were detected among sample groups, and air-drying up to 70 °C results in equally nutritious products at shorter processing times. Only the iodine content was found lower in freeze-dried compared to air-dried samples. The swelling capacity of the air-dried samples was significantly lower than in freeze-dried samples, particularly at high temperatures (40 and 70 °C), reflecting alteration of the physico-chemical properties of the seaweed during air-drying (attributed to product shrinkage) and reduced capacity of the final product to rehydrate. Structural differences between air-dried products at 25 and 70 °C may explain the differences in mouthfeel perception (dissolving rate) among the two sample groups observed during a sensory evaluation. Overall, the drying temperature within this range did not alter neither the aroma (i.e. odor) nor the flavor intensity of the product. In food applications where the product’s mechanical properties (e.g. porosity) are essential, freeze-drying, and to a lesser extent, air-drying at low temperatures, will result in higher quality products than air-drying at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angell AR, Mata L, de Nys R, Paul NA (2016) The protein content of seaweeds: a universal nitrogen-to-protein conversion factor of five. J Appl Phycol 28:511–524

    Article  CAS  Google Scholar 

  • Bonazzi C, Dumoulin E (2011) Quality changes in food materials as influenced by drying processes. In: Tsotsas E, Mujumdar AS (eds) Modern drying technology, Volume 3: Product Quality and Formulation. Wiley-VCH Verlag, Weinheim Germany, pp 1–20

  • Chan JCC, Cheung PCK, Ang PO (1997) Comparative studies on the effect of three drying methods on the nutritional composition of seaweed Sargassum hemiphyllum (Turn.) C. Ag. J Agric Food Chem 45:3056–3059

    Article  CAS  Google Scholar 

  • Chapman AS, Stévant P, Emblem Larssen W (2015) Food or fad? Challenges and opportunities for including seaweeds in a Nordic diet. Bot Mar 58:423–433

    Article  Google Scholar 

  • Chel-Guerrero L, Perez-Flores V, Betancur-Ancona D, Davila-Ortiz G (2002) Functional properties of flours and protein isolates from Phaseolus lunatus and Canavalia ensiformis seeds. J Agric Food Chem 50:584–591

    Article  PubMed  CAS  Google Scholar 

  • Cofrades S, López-López I, Solas MT, Bravo L, Jimenez-Colmenero F (2008) Influence of different types and proportions of added edible seaweeds on characteristics of low-salt gel/emulsion meat systems. Meat Sci 79:767–776

    Article  PubMed  CAS  Google Scholar 

  • Cox S, Gupta S, Abu-Ghannam N (2012) Effect of different rehydration temperatures on the moisture, content of phenolic compounds, antioxidant capacity and textural properties of edible Irish brown seaweed. Food Sci Technol 47:300–307

    CAS  Google Scholar 

  • Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899

    Article  CAS  Google Scholar 

  • Déléris P, Nazih H, Bard JM (2016) Seaweeds in human health. In: Fleurence J, Levine I (eds) Seaweed in health and disease prevention. Academic Press, Amsterdam, pp 319–367

  • Enríquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94:457–471

    Article  PubMed  Google Scholar 

  • Fleurence J (2004) Seaweed proteins. In: Yada R (ed) Proteins in food processing. Woodhead publishing, Cambridge, pp 197–213

  • Fleury N, Lahaye M (1991) Chemical and physico-chemical characterisation of fibres from Laminaria digitata (kombu breton): a physiological approach. J Sci Food Agric 55:389–400

    Article  CAS  Google Scholar 

  • Fung A, Hamid N, Lu J (2013) Fucoxanthin content and antioxidant properties of Undaria pinnatifida. Food Chem 136:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Girolami A, Napolitano F, Faraone D, Braghieri A (2013) Measurement of meat color using a computer vision system. Meat Sci 93:111–118

    Article  PubMed  Google Scholar 

  • Gómez-Ordóñez E, Jiménez-Escrig A, Rupérez P (2010) Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res Int 43:2289–2294

    Article  CAS  Google Scholar 

  • Gupta S, Cox S, Abu-Ghannam N (2011) Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed. LWT - Food Sci Technol 44:1266–1272

    Article  CAS  Google Scholar 

  • Haugan JA, Liaaen-Jensen S (1994) Algal carotenoids 54. Carotenoids of brown algae (Phaeophyceae). Biochem Syst Ecol 22:31–41

    Article  CAS  Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Horie Y, Sugase K, Horie K (1995) Physiological differences of soluble and insoluble dietary fibre fractions of brown algae and mushrooms in pepsin activity in vitro and protein digestibility. Asia Pac J Clin Nutr 4:251–255

    PubMed  CAS  Google Scholar 

  • Hou X, Feng X, Qian Q, Chai C (1998) A study of iodine loss during the preparation and analysis of samples using 131I tracer and neutron activation analysis. Analyst 123:2209–2213

    Article  CAS  Google Scholar 

  • Ikeda K (2002) New seasonings. Chem Senses 27:847–849

    Article  PubMed  Google Scholar 

  • Indrawati R, Sukowijoyo H, Indriatmoko, Wijayanti RDE, Limantara L (2015) Encapsulation of brown seaweed pigment by freeze drying: characterization and its stability during storage. Procedia Chem 14:353–360

    Article  CAS  Google Scholar 

  • ISO:8586:1 (2012) Sensory analysis—general guidance for the selection, training and monitoring of selected assessors and expert sensory assessors. International Organization for Standardization, Geneva Switzerland, pp 28

  • ISO:13299 (2003) Sensory analysis—methodology—general guidance for establishing a sensory profile. International Organization for Standardization, Geneva Switzerland, pp 41

  • Kajiwara T, Hatanaka A, Kawai T, Ishihara M, Tsuneya T (1988) Study of flavor compounds of essential oil extracts from edible Japanese kelps. J Food Sci 53:960–962

    Article  CAS  Google Scholar 

  • Küpper FC, Carpenter LJ, McFiggans GB, Palmer CJ, Waite TJ, Boneberg E-M, Woitsch S, Weiller M, Abela R, Grolimund D, Potin P, Butler A, Luther GW, Kroneck PMH, Meyer-Klaucke W, Feiters MC (2008) Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc Natl Acad Sci U S A 105:6954–6958

    Article  PubMed  PubMed Central  Google Scholar 

  • Lage-Yusty MA, Alvarado G, Ferraces-Casais P, López-Hernández J (2014) Modification of bioactive compounds in dried edible seaweeds. Int J Food Sci Technol 49:298–304

    Article  CAS  Google Scholar 

  • Lawless H, Heymann H (2010) Sensory evaluation of food: principles and practices, 2nd edition. Springer, New York

  • Lindsay R (2008) Flavors. In: Demodaran S, Parkin KL, Fennema OR (eds) Fennema’s food chemistry, 4th edition. CRC Press, , Boca Raton, pp 639–687

  • Ling ALM, Yasir S, Matanjun P, Abu Bakar MF (2015) Effect of different drying techniques on the phytochemical content and antioxidant activity of Kappaphycus alvarezii. J Appl Phycol 27:1717–1723

    Article  CAS  Google Scholar 

  • López-Pérez O, Picon A, Nuñez M (2017) Volatile compounds and odour characteristics of seven species of dehydrated edible seaweeds. Food Res Int 99:1002–1010

    Article  PubMed  CAS  Google Scholar 

  • Lüning K, Mortensen LM (2015) European aquaculture of sugar kelp (Saccharina latissima) for food industries: iodine content and epiphytic animals as major problems. Bot Mar 58:449–455

    Article  CAS  Google Scholar 

  • MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edible seaweeds. Nutr Rev 65:535–543

    Article  PubMed  Google Scholar 

  • Marfaing H, Hemon E, Clement M-J, Sassi J-F, Lerat Y, Chevelot L, Daniel R (2009) Delineating the relationship between the structural features of algal fucoidan and brown seaweed species. Paper presented at the Polymerix, 4th international symposium: biopolymers diversity and industrial applications perspectives, Rennes, France, 28–29 May, 2009

  • Marinho GS, Holdt SL, Angelidaki I (2015) Seasonal variations in the amino acid profile and protein nutritional value of Saccharina latissima cultivated in a commercial IMTA system. J Appl Phycol 27:1991–2000

    Article  CAS  Google Scholar 

  • Michel F, Priol J, Galaup P, Demaimay M, Bigot C (1997) Effet de deux techniques de séchage sur les composés volatils de deux algues alimentaires Ulva sp et Palmaria palmata. Sci Aliments 17:601–617

    CAS  Google Scholar 

  • Miyai K, Tokushige T, Kondo M (2008) Suppression of thyroid function during ingestion of seaweed “kombu” (Laminaria japonica) in normal Japanese adults. Endocr J 55:1103–1108

    Article  PubMed  CAS  Google Scholar 

  • Moreira R, Chenlo F, Sineiro J, Arufe S, Sexto S (2016) Drying temperature effect on powder physical properties and aqueous extract characteristics of Fucus vesiculosus. J Appl Phycol 28:2485–2494

    Article  CAS  Google Scholar 

  • Mouritsen OG (2017) Those tasty weeds. J Appl Phycol 29:2159–2164

    Article  Google Scholar 

  • Mouritsen OG, Williams L, Bjerregaard R, Duelund L (2012) Seaweeds for umami flavour in the New Nordic Cuisine. Flavour 1:4

    Article  Google Scholar 

  • Murata M, Nakazoe J-I (2001) Production and use of marine algae in Japan. Jap Agric Res Quart 35:281–290

    Article  Google Scholar 

  • Mæhre HK, Malde MK, Eilertsen KE, Elvevoll EO (2014) Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J Sci Food Agric 94:3281–3290

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya K (2002) Umami: a universal taste. Food Rev Int 18:23–38

    Article  CAS  Google Scholar 

  • Nitschke U, Stengel DB (2015) A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products. Food Chem 172:326–334

    Article  PubMed  CAS  Google Scholar 

  • Nitschke U, Stengel DB (2016) Quantification of iodine loss in edible Irish seaweeds during processing. J Appl Phycol 28:3527–3533

    Article  Google Scholar 

  • Osnes KK, Mohr V (1985) Peptide hydrolases of Antartic krill, Euphausia superba. Comp Biochem Physiol B 82:599–606

    Article  Google Scholar 

  • Quemener B, Marot C, Mouillet L, Da Riz V, Diris J (2000) Quantitative analysis of hydrocolloids in food systems by methanolysis coupled to reverse HPLC. Part 1. Gelling carrageenans. Food Hydrocoll 14:9–17

    Article  CAS  Google Scholar 

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. Prog Phycol Res 4:130–230

    Google Scholar 

  • Rioux L-E, Beaulieu L, Turgeon SL (2017) Seaweeds: a traditional ingredients for new gastronomic sensation. Food Hydrocoll 68:255–265

    Article  CAS  Google Scholar 

  • Roleda MY, Skjermo J, Marfaing H, Jónsdóttir R, Rebours C, Gietl A, Stengel DB, Nitschke U (2018) Iodine content in bulk biomass of wild-harvested and cultivated edible seaweeds: inherent variations determine species-specific daily allowable consumption. Food Chem 254:333–339

    Article  PubMed  CAS  Google Scholar 

  • Rupérez P, Saura-Calixto F (2001) Dietary fibre and physicochemical properties of edible Spanish seaweeds. Eur Food Res Technol 212:349–354

    Article  Google Scholar 

  • Sappati PK, Nayak B, van Walsum GP (2017) Effect of glass transition on the shrinkage of sugar kelp (Saccharina latissima) during hot air convective drying. J Food Eng 210:50–61

    Article  CAS  Google Scholar 

  • Schiener P, Black KD, Stanley MS, Green DH (2015) The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J Appl Phycol 27:363–373

    Article  CAS  Google Scholar 

  • Stévant P, Marfaing H, Duinker A, Fleurence J, Rustad T, Sandbakken I, Chapman A (2017a) Biomass soaking treatments to reduce potentially undesirable compounds in the edible seaweeds sugar kelp (Saccharina latissima) and winged kelp (Alaria esculenta) and health risk estimation for human consumption. J Appl Phycol. https://doi.org/10.1007/s10811-017-1343-8

  • Stévant P, Marfaing H, Rustad T, Sandbakken I, Fleurence J, Chapman A (2017b) Nutritional value of the kelps Alaria esculenta and Saccharina latissima and effects of short-term storage on biomass quality. J Appl Phycol 29:2417–2426

    Article  CAS  Google Scholar 

  • Stévant P, Rebours C, Chapman A (2017c) Seaweed aquaculture in Norway: recent industrial developments and future perspectives. Aquacult Int 25:1373–1390

    Article  Google Scholar 

  • Tello-Ireland C, Lemus-Mondaca R, Vega-Gálvez A, López J, Di Scala K (2011) Influence of hot-air temperature on drying kinetics, functional properties, colour, phycobiliproteins, antioxidant capacity, texture and agar yield of alga Gracilaria chilensis. LWT - Food Sci Technol 44:2112–2118

    Article  CAS  Google Scholar 

  • Wang T, Jónsdóttir R, Liu H, Kristinsson HG, Raghavan S, Ólafsdóttir G (2012) Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. J Agric Food Chem 60:5874–5883

    Article  PubMed  CAS  Google Scholar 

  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29:949–982

    Article  PubMed  CAS  Google Scholar 

  • WHO/FAO/UNU (2007) Protein and amino acid requirements in human nutrition. WHO Technical Report Series. Report of a joint WHO/FAO/UNU expert consultation

  • Wong KF, Cheung PC (2001a) Influence of drying treatment on three Sagassum species 1. Proximate composition, amino acid profile and some physico-chemical properties. J Appl Phycol 13:43–50

    Article  CAS  Google Scholar 

  • Wong KF, Cheung PC (2001b) Influence of drying treatment on three Sagassum species 2. Protein extractability, in vitro protein digestability and amino acid profile of protein concentrates. J Appl Phycol 13:51–58

    Article  CAS  Google Scholar 

  • Yam KL, Papadakis SE (2004) A simple digital imaging method for measuring and analyzing color of food surfaces. J Food Eng 61:137–142

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Jorunn Skjermo and SINTEF Ocean’s seaweed cultivation team for providing the biomass, Veronica Hammer Hjellnes for the free amino acid characterization of the samples, Turid Fylling Standal for the analysis of the samples physico-chemical properties (WBC, OBC, SC), and panel members from Møreforsking Ålesund AS, who participated to the sensory evaluation of the samples.

Funding

This work was conducted as part of the PROMAC project (244244), funded by the Research Council of Norway, and part of the Sustainable Innovation in Food- and Bio-based Industries Programme. Pierrick Stévant was supported by a doctoral fellowship from Sparebanken Møre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierrick Stévant.

Electronic supplementary material

ESM 1

(PDF 471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stévant, P., Indergård, E., Ólafsdóttir, A. et al. Effects of drying on the nutrient content and physico-chemical and sensory characteristics of the edible kelp Saccharina latissima. J Appl Phycol 30, 2587–2599 (2018). https://doi.org/10.1007/s10811-018-1451-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1451-0

Keywords

Navigation