Journal of Applied Phycology

, Volume 29, Issue 5, pp 2363–2373 | Cite as

Carbon dioxide mitigation potential of seaweed aquaculture beds (SABs)

  • Calvyn F. A. Sondak
  • Put O. AngJr
  • John Beardall
  • Alecia Bellgrove
  • Sung Min Boo
  • Grevo S. Gerung
  • Christopher D. Hepburn
  • Dang Diem Hong
  • Zhengyu Hu
  • Hiroshi Kawai
  • Danilo Largo
  • Jin Ae Lee
  • Phaik-Eem Lim
  • Jaruwan Mayakun
  • Wendy A. Nelson
  • Jung Hyun Oak
  • Siew-Moi Phang
  • Dinabandhu Sahoo
  • Yuwadee Peerapornpis
  • Yufeng Yang
  • Ik Kyo ChungEmail author


Seaweed aquaculture beds (SABs) that support the production of seaweed and their diverse products, cover extensive coastal areas, especially in the Asian-Pacific region, and provide many ecosystem services such as nutrient removal and CO2 assimilation. The use of SABs in potential carbon dioxide (CO2) mitigation efforts has been proposed with commercial seaweed production in China, India, Indonesia, Japan, Malaysia, Philippines, Republic of Korea, Thailand, and Vietnam, and is at a nascent stage in Australia and New Zealand. We attempted to consider the total annual potential of SABs to drawdown and fix anthropogenic CO2. In the last decade, seaweed production has increased tremendously in the Asian-Pacific region. In 2014, the total annual production of Asian-Pacific SABs surpassed 2.61 × 106 t dw. Total carbon accumulated annually was more than 0.78 × 106 t y−1, equivalent to over 2.87 × 106 t CO2 y−1. By increasing the area available for SABs, biomass production, carbon accumulation, and CO2 drawdown can be enhanced. The conversion of biomass to biofuel can reduce the use of fossil fuels and provide additional mitigation of CO2 emissions. Contributions of seaweeds as carbon donors to other ecosystems could be significant in global carbon sequestration. The ongoing development of SABs would not only ensure that Asian-Pacific countries will remain leaders in the global seaweed industry but may also provide an added dimension of helping to mitigate the problem of excessive CO2 emissions.


CO2 mitigation Seaweed aquaculture bed (SAB) Macroalgae Blue carbon Carbon donor Asian Pacific region 



This work has been supported by the National Research Foundation of Korea, Marine Research Institute, Pusan National University (NRF-2013R1A1A2009359), and DIKTI Scholarship from the Indonesia Ministry of National Education and Culture for CFAS.


  1. Adame MF, Wright SF, Grinham A, Lobb K, Reymond CE, Lovelock CE (2012) Terrestrial-marine connectivity: patterns of terrestrial soil carbon deposition in coastal sediments determined by analysis of glomalin related soil protein. Limnol Oceanogr 57:1492–1502CrossRefGoogle Scholar
  2. Adams JMM, Schmidt A, Gallagher JA (2015) The impact of sample preparation of the macroalgae Laminaria digitata on the production of the biofuels bioethanol and biomethane. J Appl Phycol 27:985–991Google Scholar
  3. AGEDI (2013) Blue carbon in Abu Dhabi. Protecting our coastal heritage: The Abu Dhabi clue carbon demonstration project. Published by AGEDI. Produced by GRID-Arendal, A Centre Collaborating with UNEP, NorwayGoogle Scholar
  4. Aizawa M, Asaoka K, Atsumi M, Sakou T (2007) Seaweed bioethanol production: the ocean sunrise project. Available from: Accessed 28 Mar 2015
  5. Andersen KH, Mork M, Nilsen JEO (1996) Measurement of the velocity-profile in and above a forest of Laminaria hyperborea. Sarsia 81:193–196CrossRefGoogle Scholar
  6. Arenas F, Vas-Pinto F (2014) Marine algae as carbon sinks and allies to combat global warming. In: Pereira L, Neto JM (eds) Marine algae: biodiversity, taxonomy, environmental assessment and biotechnology. CRC Press, Boca Raton, pp. 178–193Google Scholar
  7. Azam F, Fenchel T, Field JG, Gray JS, Meyerrell LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263CrossRefGoogle Scholar
  8. Bach QV, Sillero MV, Tran KQ, Skjermo J (2014) Fast hydrothermal liquefaction of a Norwegian macroalga: screening test. Algal Res 6(B):271–276CrossRefGoogle Scholar
  9. Barratt-Boyes M (2012) Pest may prove a source of plenty. New Zealand Aquaculture 46:8–9Google Scholar
  10. Baruah K, Norouzitallab P, Sorgeloos P (2006) Seaweed: an ideal component for wastewater treatment for use in aquaculture. Aquaculture Europe 31:3–6Google Scholar
  11. Bharathiraja B, Chakravarthy M, Kumar RR, Yogendran D, Yuvaraj D, Jayamuthunagai J, Kumar RP, Palani S (2015) Aquatic biomass (algae) as a future feed stock for bio-refineries: a review on cultivation, processing and products. Renew Sust Energ Rev 47:634–653CrossRefGoogle Scholar
  12. Bird MI, Wurster CM, de Paula Silva PH, Bass AM, de Nys R (2011) Algal biochar-production and properties. Bioresource Technol 102:1886–1891CrossRefGoogle Scholar
  13. Blaber SJM (2000) Tropical estuarine fishes: ecology, exploitation and conservation. Blackwell, OxfordCrossRefGoogle Scholar
  14. Bouillon S, Dahdouh-Guebas F, Rao AVVS, Koedam N, Dehairs F (2003) Sources of organic carbon in mangrove sediments: variability and possible ecological implications. Hydrobiologia 495:33–39CrossRefGoogle Scholar
  15. Bouillon S, Connoly RM (2009) Carbon exchange among tropical coastal ecosystems. In: Nagelkerken I (ed) Ecological connectivity among tropical ecosystems. Springer, Dordrecht, pp. 45–70CrossRefGoogle Scholar
  16. Cesar HJS, Ohman MC, Espeut B, Honkanen M (2000) An economic valuation of Portland Bright, Jamaica: an integrated terrestrial and marine protected area. Working paper 00/03, Institute for Environmental Studies, Free University, AmsterdamGoogle Scholar
  17. Choi JH, Woo HC, Suh DJ (2014) Pyrolysis of seaweeds for bio-oil and bio-char production. Chem Eng Trans 37:121–126Google Scholar
  18. Chopin T, Yarish C, Wilkes R, Belyea E, Lu S, Mathieson A (1999) A developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. J Appl Phycol 11:463–472CrossRefGoogle Scholar
  19. Christie H, Norderhaug KM, Fredriksen S (2009) Macrophytes as habitat for fauna. Mar Ecol Prog Ser 396:221–233CrossRefGoogle Scholar
  20. Chmura GL, Anisfield SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetlands soil. Glob Biogeochem Cycles 1111. doi: 10.1029/2002GB001917
  21. Chung IK (2015) Outlook for Korean aquaculture—seaweed aquaculture in Korea. AquaInfo magazine (English ed) 3:42–60Google Scholar
  22. Chung IK, Beardall J, Mehta S, Sahoo D, Stojkovic S (2011) Using marine macroalgae for carbon sequestration: a critical appraisal. J Appl Phycol 23:877–886CrossRefGoogle Scholar
  23. Chung IK, Oak JH, Lee JA, Shin JA, Kim JG, Park KS (2013) Installing kelp forest/seaweed beds for mitigation and adaptation against global warming: Korean project overview. ICES J Mar Sci. doi: 10.1093/icesjms/fss206 Google Scholar
  24. Cole AJ, Mata L, Paul NA, de Nys R (2014) Using CO2 to enhance carbon capture and biomass applications of freshwater macroalgae. GCB Bioenergy 6:637–645CrossRefGoogle Scholar
  25. Cramton P, Ockenfels A, Stoft S (2015) An international carbon-price commitment promotes cooperation. Econ Energy Environ Policy 4:51–64CrossRefGoogle Scholar
  26. Crawley KR, Hyndes GA, Vanderklift MA, Revill AT, Nichols PD (2009) Allochthonous brown algae are the primary food source for consumers in a temperate, coastal environment. Mar Ecol Prog Ser 376:33–44CrossRefGoogle Scholar
  27. Delille B, Borges AV, Delille D (2009) Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the sub-Antarctic coastal area. Estuar Coast Shelf Sci 81:114–122CrossRefGoogle Scholar
  28. Dierssen HM, Zimmerman RC, Drake RA (2009) Burdige DJ (2009) potential export of unattached benthic macroalgae to the deep sea through wind-driven Langmuir circulation. Geophys Res Lett 36(4):L04602. doi: 10.1029/2008GL036188 CrossRefGoogle Scholar
  29. Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8CrossRefGoogle Scholar
  30. Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Chang 3:961–968CrossRefGoogle Scholar
  31. Eklöf JS, de la Torre-Castro M, Nilsson C, Rönnbäck P (2006) How do seaweed farms influence local fishery catches in a seagrass-dominated setting in Chwaka Bay. Zanzibar Aquat Living Resour 19:137–147CrossRefGoogle Scholar
  32. Eklöf JS, Msuya FE, Lyimo TJ, Buriyo AS (2012) Seaweed farming in Chwaka Bay: a sustainable alternative in aquaculture? In: de la Torre-Castro M, Lyimo TJ (eds) People, nature and research in Chwaka Bay. WIOMSA, Zanzibar, Tanzania, pp. 213–233Google Scholar
  33. Emerton L, Kekulandala LDCB (2003) Assessment of economic value of Muthurajawela wetland. Occ. Pap. IUCN Sri Lanka (4): 28p.
  34. EPA (2014) Climate change indicators in the United States: Global greenhouse gas emissions. Accessed 20 Mar 2016.
  35. Fankhauser S, Tol RSJ (1996) Recent advancements in the economic assessment of climate change costs. Energ Policy 24:665–667CrossRefGoogle Scholar
  36. FAO (2014) The state of world fisheries and aquaculture 2012. Rome, 223 pGoogle Scholar
  37. FAO (2016) FIGIS. Global aquaculture production 1950–2012. Food and Agriculture. Available from: Accessed 28 Mar 2016
  38. Farrelly DJ, Everard CD, Fagan CC, McDonnell KP (2013) Carbon sequestration and the role of biological carbon mitigation: a review. Renew Sust Energ Rev 21:712–727Google Scholar
  39. Fei XG (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512:145–151CrossRefGoogle Scholar
  40. Fourqurean JW, Duarte CM, Kennedy H, Marba N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery K, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509CrossRefGoogle Scholar
  41. Fraser CI, Nikula R, Waters JM (2011) Oceanic rafting by coastal community. Proc R Soc B 278:649–655CrossRefPubMedGoogle Scholar
  42. Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60CrossRefGoogle Scholar
  43. Gao K, Zheng Y (2010) Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessile (Rhodophyta). Glob Chang Biol 16:2388–2398Google Scholar
  44. Gevaert F, Janguin MA, Davoult D (2008) Biometrics in Laminaria digitata: a useful tool to assess biomass, carbon and nitrogen contents. J Sea Res 60:215–219CrossRefGoogle Scholar
  45. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131CrossRefPubMedGoogle Scholar
  46. Harrold C, Light K, Lisin S (1998) Organic enrichment of submarine-canyon and continental shelf benthic communities by macroalgal drift imported form nearshore kelp forests. Limnol Oceanogr 43:669–678CrossRefGoogle Scholar
  47. He P, Xu S, Zhang H, Wen S, Day Y, Lin S, Yarish C (2008) Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea. Water Res 42:1281–1289CrossRefPubMedGoogle Scholar
  48. Hill R, Bellgrove A, Macreadie PI, Petrou K, Beardall J, Steven A, Ralph PJ (2015) Can macroalgae contribute to blue carbon? An Australian perspective. Limnol Oceanogr 60:1689–1706CrossRefGoogle Scholar
  49. Hobday AJ (2000) Abundance and dispersal of drifting kelp Macrocystis pyrifera rafts in the Southern California Bight. Mar Ecol Prog Ser 195:101–116CrossRefGoogle Scholar
  50. Hong DD, Hien MH, Son PN (2007) Seaweed from Vietnam used for functional food, medicine and biofertilizer. J Appl Phycol 19:817–826CrossRefGoogle Scholar
  51. Howard J, Hoyt J, Isensee K, Pidgeon E, Telszewski M (2014) Coastal blue carbon: methods for Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International union for conservation of nature factors in mangroves, tidal salt marshes, and seagrasses meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International union for conservation of nature. Arlington, Virginia, USAGoogle Scholar
  52. Huo YZ, Wu HL, Chai ZY, Xu SN, Han F, Dong L, He PM (2012) Bioremediation efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture system with Pseudosciaena crocea in Xiangshan harbor, China. Aquaculture 326-329:99–105CrossRefGoogle Scholar
  53. Hughes AD, Black KD, Campbell I, Davidson K, Kelly MS (2012) Does seaweed offer a solution for bioenergy with biological carbon capture and storage? Greenhouse Gas Sci Technol 2:402–407CrossRefGoogle Scholar
  54. Hyndes GA, Lavery PS, Doropoulos C (2012) Dual processes for cross boundaries subsidies: incorporation of nutrients from reef-derived kelp into a seagrass ecosystem. Mar Ecol Prog Ser 445:97–107CrossRefGoogle Scholar
  55. Hyndes GA, Nagelkerken I, McLeod RJ, Connolly RM, Lavery PS, Vanderklift MA (2014) Mechanisms and ecological role of carbon transfer within coastal seascapes. Biol Rev 89:232–254CrossRefPubMedGoogle Scholar
  56. IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Meyer LA (eds)] IPCC, Geneva, Switzerland, 151 ppGoogle Scholar
  57. Ito Y, Nakano Y, Matsushita S, Mikami N, Yokoyama J, Kirihara S, Notoya M (2009) Estimations of quantities of carbon storage by seaweed and seagrass beds. Japan Fish Eng 46:135–146Google Scholar
  58. Jotzo F (2012) Australia’s carbon price. Nat Clim Chang 2:475–476CrossRefGoogle Scholar
  59. Jackson GA (1984) Internal wave attenuation by coastal kelp stands. J Phys Oceanogr 14:1300–1306CrossRefGoogle Scholar
  60. Jansson C, Wullschleger SD, Kalluri UC, Tuskan GA (2010) Photosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696CrossRefGoogle Scholar
  61. Johnson DL, Richardson PL (1977) On the wind-induced sinking of Sargassum. J Exp Mar Biol Ecol 28:255–267CrossRefGoogle Scholar
  62. Kaur CR, Ang M (2009) Seaweed culture and utilization in Malaysia status, challenges and economic potential. Seminar on developing the seaweed aquaculture sector in Malaysia, (Maritime Institute in Malaysia). Presented at the Seminar on developing the seaweed aquaculture sector in Malaysia, MIMA (Maritime Institute in Malaysia), Malaysia. 27 October 2009.
  63. Kim SS, Ly HV, Kim J, Choi JH, Woo HC (2013) Thermogravimetric characteristics and pyrolysis kinetics of alga Sargassum sp. biomass. Bioresour Technol 139:242–248CrossRefPubMedGoogle Scholar
  64. Kneib RT (1997) The role of tidal marshes in the ecology of estuarine nekton. Oceanogr Mar Biol Ann Rev 35:163–220Google Scholar
  65. Komatsu T, Matsunaga D, Mikami A, Sagawa T, Boisnier E, Tatsukawa K, Aoki M, Ajisaka T, Uwai S, Tanaka K, Ishida K, Tanoue H, Sugimoto T (2008) Abundance of drifting seaweeds in eastern East China Sea. J Appl Phycol 20:801–809Google Scholar
  66. Littler MM, Murray SN (1974) The primary productivity of marine macrophytes from a rocky intertidal community. Mar Biol 27:131–135Google Scholar
  67. Lovas SM, Totum A (2001) Effect of the kelp Laminaria hyperborean upon sand dune erosion and water particle velocities. Coast Eng 44:37–63CrossRefGoogle Scholar
  68. Luisetti T, Jackson EL, Turner RK (2013) Valuing the European ‘coastal blue carbon’storage benefit. Mar Pollut Bull 71:101–106CrossRefPubMedGoogle Scholar
  69. MacKay D, Cramton P, Ockenfels A, Stoft S (2015) Price carbon—I will if you will. Nature 526:315–316CrossRefPubMedGoogle Scholar
  70. Mann KH (1972) Ecological energetics of the sea-weed zone in a marine bay on the Atlantic coast of Canada. II. Productivity of the seaweeds. Mar Biol 14:199–209Google Scholar
  71. Maie N, Jaffe R, Miyoshi T, Childers DL (2006) Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochemistry 78:285–314CrossRefGoogle Scholar
  72. Manley B (2016) Afforestation responses to carbon price changes and market certainties. Report for the ministry for primary industries.
  73. Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560Google Scholar
  74. McHugh DJ (2003) A guide to seaweed industry. Food and Agricultural Organization, Rome, 106pGoogle Scholar
  75. McKenzie PF, Bellgrove A (2009) Dislodgment and attachment strength of the intertidal macroalga Hormosira banksii (Fucales, Phaeophyceae). Phycologia 48:335–343CrossRefGoogle Scholar
  76. McVey JP, Stickney R, Yarish C, Chopin T (2002) Aquatic poly-culture and balanced ecosystem management: new paradigms for seafood production. In: Stickney RR, McVey JP (eds) Responsible aquaculture. CAB International, Oxford, pp. 91–104CrossRefGoogle Scholar
  77. MMAF (Ministry of Marine Affair and Fisheries Indonesia) (2014) Available from: Accessed 10 Oct 2016
  78. MISA (Marine Innovation South Australia) (2011) Seaweed farming coming soon. MISA Snapshot issue 1. Available from: Accessed 4 Oct 2014
  79. Mitra A, Zaman S, Pramanick P, Bhattacharyya SB, Raha AK (2014) Stored carbon in dominant seaweeds of Indian Sundarbans. Pertanika J Trop Agric Sci 37:263–274Google Scholar
  80. Mitra A, Zaman S (2014) Carbon sequestration by coastal floral community: a ground zero observation on blue carbon. TERI, New Delhi 428pGoogle Scholar
  81. Muraoka D (2004) Seaweed resources as a source of carbon fixation. Bull Fish Res Agen 1:59–63Google Scholar
  82. Murray BC, Pendleton L, Jenkins WA, Sifleet S (2011) Green payment for blue carbon: economic incentives for protecting threatened coastal habitats. Nicholas Institute for Environment Policy Solutions Report. Durham, North Carolina, USA, p 42Google Scholar
  83. Nellemann C, Corcoran E, Duarte CM, Valdes L, De Young C, Fonseca L, Grimsditch G (2009) Blue carbon. A rapid response assessment. GRID-Arendal: United Nations Environment ProgrammeGoogle Scholar
  84. Nkemka VN, Murto M (2010) Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. J Environ Manag 91:1573–1579CrossRefGoogle Scholar
  85. Notoya M (2011) Production of biofuel by macroalgae with preservation of marine resources and environment. In: Israel A, Einav R, Seckbach J (eds) Seaweed and their role in globally changing environments. Springer, New York, pp. 219–228Google Scholar
  86. N’Yeurt A, Chynoweth D, Capron ME, Stewart J, Hasan M (2012) Negative carbon via ocean afforestation. Process Safe Environ Protect 90:467–474CrossRefGoogle Scholar
  87. Okuda K (2008) Coastal environment and seaweed-bed ecology in Japan. Kuroshio Science 2-1:15–20Google Scholar
  88. Olafsson E, Johnstone RW, Ndaro SGM (1995) Effects of intensive seaweed farming on the meiobenthos in a tropical lagoon. J Exp Mar Biol Ecol 191:101–117CrossRefGoogle Scholar
  89. Olivier JG, Janssens-Maenhout G, Muntean M, Peters JAHW (2015) Trends in global CO2 emissions; 2015 Report, The Hague: PBL Netherlands Environmental Assessment Agency. European Commission, Joint Research Centre, IspraGoogle Scholar
  90. Orr M, Zimmer M, Jelinski DE, Mews M (2005) Wrack deposition on different beach types: spatial and temporal variation in the pattern of subsidy. Ecology 86:1496–1507CrossRefGoogle Scholar
  91. Paddack MJ, Estes JA (2000) Kelp forest fish population in marine reserves and adjacent exploited areas of central California. Ecol Appl 10:855–870CrossRefGoogle Scholar
  92. Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marba N, Megonigal P, Pidgeon E, Herr D, Gordon D, Baldera A (2012) Estimating global blue carbon emission from conversion and degradation of vegetated coastal ecosystems. PLoS One 7:e43542CrossRefPubMedPubMedCentralGoogle Scholar
  93. Phang SM, Yeong HY, Lim PE, Adibi Rahiman MN, Gan KT (2010) Commercial varieties of Kappaphycus and Eucheuma in Malaysia. Malaysian J Sci 29:214–224Google Scholar
  94. Ramus J (1992) Productivity of seaweeds. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, NY, pp. 239–255CrossRefGoogle Scholar
  95. Raven JA, Cockell CS, La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil Trans Roy Soc B 363:2641–2650Google Scholar
  96. Roberts DA, Paul NA, Dworjanyn SA, Bird MI, de Nys R (2015) Biochar commercially cultivated seaweed for soil amelioration. Scientific Report 5:9665. doi: 10.1038/srep09665 CrossRefGoogle Scholar
  97. Samonte-Tan G, Armedilla MC (2004) Economic valuation of Philippine coral reefs in the South China Sea biogeographic region. Nat Coral Reef Review Ser 3:1–39Google Scholar
  98. Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic Press, San DiegoGoogle Scholar
  99. Semesi S, Beer S, Bjork M (2009) Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous algae in a tropical seagrass meadow. Mar Ecol Prog Ser 382:41–47CrossRefGoogle Scholar
  100. Siikamaki J, Sanchirico JN, Jardine S, McLaughlin D, Morris DF (2012) Blue carbon: global options for reducing emissions from the degradation and development of coastal ecosystems. Resource for the Future, Washington. 70p.Google Scholar
  101. Smetacek V, Zingone A (2013) Green and golden seaweed tides on the rise. Nature 504:84–88CrossRefPubMedGoogle Scholar
  102. Smith SV (1981) Marine macrophytes as a global carbon sink. Science 211:838–840CrossRefPubMedGoogle Scholar
  103. Sondak CFA, Chung IK (2015) Potential blue carbon from coastal ecosystems in the Republic of Korea. Ocean Sci J 50:1–8CrossRefGoogle Scholar
  104. Suh DJ, Choi JH, Woo HC (2014) Pyrolysis of seaweeds for bio-oil and bio-char production. Chem Eng Trans 37:121–126Google Scholar
  105. Tang Q, Zhang J, Fang J (2011) Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystem. Mar Ecol Prog Ser 424:97–104CrossRefGoogle Scholar
  106. Thayer G, Bjorndal K, Ogden J, Williams S, Zieman J (1984) Role of larger herbivores in seagrass communities. Estuaries 7:351–376CrossRefGoogle Scholar
  107. Torres LG (2009) A kaleidoscope of mammal, bird and fish: habitat use patterns of top predators and their prey in Florida Bay. Mar Ecol Prog Ser 375:289–304CrossRefGoogle Scholar
  108. Trevathan-Tackett SM, Kelleway JJ, Macreadie PI, Beardall J, Ralph P, Bellgrove A (2015) Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology 96:3043–3057CrossRefPubMedGoogle Scholar
  109. Turan G, Neori A (2011) Intensive seaweed aquaculture: a potent solution against global warming. In: Israel A, Einav R, Seckbach J (eds) Seaweed and their role in globally changing environments. Springer, Dordrecht, pp. 359–372Google Scholar
  110. Valderrama D (2012) Social and economic dimensions of seaweed farming: a global review. 2012. IIFET, Tanzania ProceedingsGoogle Scholar
  111. Vasquez JA, Zuniga S, Tala F, Piaget N, Rondriquez DC, Alonso-Vega JM (2014) Economic valuation of kelp forests in northern Chile: values of goods and services of the ecosystem. J Appl Phycol 26:1081–1088CrossRefGoogle Scholar
  112. Vetter EW, Dayton PK (1998) Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep-Sea Res II 45:25–54CrossRefGoogle Scholar
  113. Vierros M (2013) Communities and blue carbon: the role of traditional management systems in providing benefits for carbon storage, biodiversity conservation and livelihoods. Climate Change. doi: 10.1007/s10584-013-920-3 Google Scholar
  114. Walsh M, Watson L (2011) A market analysis towards the further development of seaweed aquaculture in Ireland. Irish Sea Fisheries Board, DublinGoogle Scholar
  115. Wattage P (2011) Valuation of ecosystem services in coastal ecosystems: Asian and European perspectives. Ecosystem Services Economics (ESE). Working Paper Series No. 8. The United Nations Environment Program (UNEP) Publication SeriesGoogle Scholar
  116. Wernberg T, Vanderklift MA, How J, Lavery PS (2006) Export of detached macroalgae from reefs to adjacent seagrass beds. Oecologia 147:692–701CrossRefPubMedGoogle Scholar
  117. Widowati T, Pramono GH, Rusmanto A, Munajati SL (2012) Spatial analysis: the effectiveness of seaweed as a catalyst for improving ecologic and economic qualities in Takalar water area South Sulawesi. Proceedings of Global Geospatial Conference 2012 Québec City, Canada, 14–17 May 2012Google Scholar
  118. Wolanski E (1992) Hydrodynamics of mangrove swamps and their coastal waters. Hydrobiologia 247:141–161CrossRefGoogle Scholar
  119. Xu M, Sakamoto S, Komatsu T (2016) Attachment strength of the subtidal seaweed Sargassum horneri (Turner) C. Agardh varies among development stages and depths. J Appl Phycol. doi: 10.1007/s10811-016-0869-5DOI
  120. Yanagisawa M, Kawai S, Murata K (2013) Strategies for the production of high concentrations of bioethanol from seaweed: production of high concentrations of bioethanol from seaweed. Bioengineered 4:224–235CrossRefPubMedPubMedCentralGoogle Scholar
  121. Yang YF, Fei XG, Song JM, Hu HY, Wang GC, Chung IK (2006) Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture 254:248–255CrossRefGoogle Scholar
  122. Zehetner F (2010) Does organic carbon sequestration in volcanic soils offset volcanic CO2 emissions? Quaternary Sci Rev 29:1313–1316CrossRefGoogle Scholar
  123. Zemke-White WL, Ohno M (1999) World seaweed utilization: an end-of-century summary. J Appl Phycol 11:369–376CrossRefGoogle Scholar
  124. Zemke-White WL, Smith JE (2006) Environmental impacts of seaweed farming in the tropics. In: Critchley AT, Ohno M, Largo D (eds) Seaweed resources. Expert Center for Taxonomic Identification (ETI), Univ. Amsterdam. CD-ROM World Seaweed Resources—. Version, 1Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Calvyn F. A. Sondak
    • 1
    • 2
  • Put O. AngJr
    • 3
  • John Beardall
    • 4
  • Alecia Bellgrove
    • 5
    • 6
  • Sung Min Boo
    • 7
  • Grevo S. Gerung
    • 2
  • Christopher D. Hepburn
    • 8
  • Dang Diem Hong
    • 9
  • Zhengyu Hu
    • 10
  • Hiroshi Kawai
    • 11
  • Danilo Largo
    • 12
  • Jin Ae Lee
    • 13
  • Phaik-Eem Lim
    • 14
  • Jaruwan Mayakun
    • 15
  • Wendy A. Nelson
    • 16
    • 17
  • Jung Hyun Oak
    • 18
  • Siew-Moi Phang
    • 14
  • Dinabandhu Sahoo
    • 19
  • Yuwadee Peerapornpis
    • 20
  • Yufeng Yang
    • 21
  • Ik Kyo Chung
    • 1
    • 18
    Email author
  1. 1.Department of OceanographyPusan National UniversityBusanSouth Korea
  2. 2.Faculty of Fisheries and Marine ScienceSam Ratulangi UniversityManadoIndonesia
  3. 3.Marine Science Laboratory, School of Life SciencesThe Chinese University of Hong KongHong KongChina
  4. 4.School of Biological SciencesMonash UniversityClaytonAustralia
  5. 5.Deakin UniversityGeelongAustralia
  6. 6.School of Life and Environmental SciencesCentre for Integrative EcologyWarrnamboolAustralia
  7. 7.Chungnam National UniversityDaejonSouth Korea
  8. 8.Department of Marine ScienceUniversity of OtagoDunedinNew Zealand
  9. 9.Institute of Biotechnology, Vietnam Academy of Science and TechnologyHanoiVietnam
  10. 10.Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  11. 11.Kobe UniversityKobeJapan
  12. 12.University of San CarlosCebu CityPhilippines
  13. 13.School of Environmental Science and EngineeringInje UniversityGimhaeSouth Korea
  14. 14.Institute of Biological Sciences and Institute of Ocean and Earth Sciences (IOES) University of MalayaKuala LumpurMalaysia
  15. 15.Department of Biology, Faculty of SciencePrince of Songkla UniversityHat YaiThailand
  16. 16.National Institute of Water and Atmospheric ResearchWellingtonNew Zealand
  17. 17.School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  18. 18.Marine Research InstitutePusan National UniversityBusanSouth Korea
  19. 19.Marine Biotechnology Laboratory, Department of BotanyUniversity of DelhiDelhiIndia
  20. 20.Chiang Mai UniversityChiang MaiThailand
  21. 21.Institute of HydrobiologyJinan UniversityGuangzhouChina

Personalised recommendations