Journal of Abnormal Child Psychology

, Volume 40, Issue 4, pp 555–567 | Cite as

Evidence for a General ADHD Factor from a Longitudinal General School Population Study

  • Sébastien Normand
  • David B. Flora
  • Maggie E. Toplak
  • Rosemary Tannock


Recent factor analytic studies in Attention-Deficit/Hyperactivity Disorder (ADHD) have shown that hierarchical models provide a better fit of ADHD symptoms than correlated models. A hierarchical model includes a general ADHD factor and specific factors for inattention, and hyperactivity/impulsivity. The aim of this 12-month longitudinal study was to test the generalizability of the hierarchical models of ADHD within an elementary school population of 6–9 year old children (250 boys, 260 girls). Examination of differences as a function of informant (parent vs. teacher ratings), sex, and time was conducted. Six potential factor structures for the 18 items of the SWAN (Strengths and Weaknesses of ADHD-symptoms and Normal-behavior) scale were tested using confirmatory and exploratory factor analyses. Hierarchical models with a general ADHD factor and two or three specific factors best accounted for parent and teacher reports of symptoms for both boys and girls and at two time points separated by a 12-month interval. Findings indicate that the 18 SWAN items measure a common latent trait as well as orthogonal factors or dimensions of inattention and hyperactivity/impulsivity.


ADHD Childhood Inattention Hyperactivity/impulsivity General factor Hierarchical model School sample 

Supplementary material

10802_2011_9584_MOESM1_ESM.doc (136 kb)
ESM 1(DOC 135 kb)


  1. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders DSM-IV-TR Fourth Edition (4th ed.). American Psychiatric Publishing, Inc.Google Scholar
  2. Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397–438.CrossRefGoogle Scholar
  3. Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14, 464–504.CrossRefGoogle Scholar
  4. Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233–255.CrossRefGoogle Scholar
  5. Conners, C. (2008). Conners 3rd edition: Manual. Toronto: Multi-Health Systems Inc.Google Scholar
  6. Conners, C. K., Sitarenios, G., Parker, J. D., & Epstein, J. N. (1998a). Revision and restandardization of the Conners Teacher Rating Scale (CTRS-R): factor structure, reliability, and criterion validity. Journal of Abnormal Child Psychology, 26, 279–291.PubMedCrossRefGoogle Scholar
  7. Conners, C. K., Sitarenios, G., Parker, J. D., & Epstein, J. N. (1998b). The revised Conners’ Parent Rating Scale (CPRS-R): factor structure, reliability, and criterion validity. Journal of Abnormal Child Psychology, 26, 257–268.PubMedCrossRefGoogle Scholar
  8. Cornish, K. M., Manly, T., Savage, R., Swanson, J., Morisano, D., Butler, N., et al. (2005). Association of the dopamine transporter (DAT1) 10/10-repeat genotype with ADHD symptoms and response inhibition in a general population sample. Molecular Psychiatry, 10, 686–698.PubMedCrossRefGoogle Scholar
  9. Cornish, K. M., Wilding, J. M., & Hollis, C. (2008). Visual search performance in children rated as good or poor attenders: the differential impact of DAT1 genotype, IQ, and chronological age. Neuropsychology, 22, 217–225.PubMedCrossRefGoogle Scholar
  10. Dumenci, L., McConaghy, S. H., & Achenbach, T. M. (2004). A hierarchical three-factor model of inattention-hyperactivity-impulsivity derived from the attention problems syndrome of the teacher’s report form. School Psychology Review, 33, 287–301.Google Scholar
  11. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299.CrossRefGoogle Scholar
  12. Finney, S. J., & DiStefano, C. (2006). Nonnormal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 269–314). Charlotte, NC: Information Age Publishing.Google Scholar
  13. Gershon, J. (2002). A meta-analytic review of gender differences in ADHD. Journal of Attention Disorders, 5, 143–154.PubMedCrossRefGoogle Scholar
  14. Gibbins, C., Toplak, M. E., Flora, D. B., Weiss, M. D., & Tannock, R. (2011). Evidence for a general factor model of ADHD in adults. Journal of Attention Disorders. doi:10.1177/1087054711416310.
  15. Goodman, R. (1997). The Strengths and Difficulties Questionnaire: a research note. Journal of Child Psychology and Psychiatry, 38, 581–586.PubMedCrossRefGoogle Scholar
  16. Hart, E. L., Lahey, B. B., Loeber, R., Applegate, B., & Frick, P. J. (1995). Developmental change in attention-deficit hyperactivity disorder in boys: a four-year longitudinal study. Journal of Abnormal Child Psychology, 23, 729–749.PubMedCrossRefGoogle Scholar
  17. Hay, D. A., Bennett, K. S., Levy, F., Sergeant, J., & Swanson, J. (2007). A twin study of attention-deficit/hyperactivity disorder dimensions rated by the strengths and weaknesses of ADHD-symptoms and normal-behavior (SWAN) scale. Biological Psychiatry, 61, 700–705.PubMedCrossRefGoogle Scholar
  18. Holzinger, K. J., & Swineford, F. (1937). The Bi-factor method. Psychometrika, 2, 41–54.CrossRefGoogle Scholar
  19. Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., et al. (1997). Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 980–988.PubMedCrossRefGoogle Scholar
  20. Lahey, B. B., & Willcutt, E. G. (2010). Predictive validity of a continuous alternative to nominal subtypes of attention-deficit/hyperactivity disorder for DSM-V. Journal of Clinical Child and Adolescent Psychology, 39, 761–775.PubMedCrossRefGoogle Scholar
  21. Lahey, B. B., Pelham, W. E., Loney, J., Lee, S. S., & Willcutt, E. (2005). Instability of the DSM-IV Subtypes of ADHD from preschool through elementary school. Archives of General Psychiatry, 62, 896–902.PubMedCrossRefGoogle Scholar
  22. Larsson, H., Dilshad, R., Lichtenstein, P., & Barker, E. D. (2011). Developmental trajectories of DSM-IV symptoms of attention-deficit/hyperactivity disorder: genetic effects, family risk and associated psychopathology. Journal of Child Psychology and Psychiatry, 52, 954–963.PubMedCrossRefGoogle Scholar
  23. Levy, F., Hay, D. A., McStephen, M., Wood, C., & Waldman, I. (1997). Attention-Deficit Hyperactivity Disorder: a category or a continuum? Genetic analysis of a large-scale twin study. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 737–744.CrossRefGoogle Scholar
  24. Martel, M. M., Gremillion, M., Roberts, B., von Eye, A., & Nigg, J. T. (2010a). The structure of childhood disruptive behaviors. Psychological Assessment, 22, 816–826.CrossRefGoogle Scholar
  25. Martel, M. M., Von Eye, A., & Nigg, J. T. (2010b). Revisiting the latent structure of ADHD: is there a ‘g’ factor? Journal of Child Psychology and Psychiatry, 51, 905–914.CrossRefGoogle Scholar
  26. Martel, M. M., Roberts, B., Gremillion, M., Von Eye, A., & Nigg, J. T. (2011). External validation of bifactor model of ADHD: Explaining heterogeneity in psychiatric comorbidity, cognitive control, and personality trait profiles within DSM-IV ADHD. Journal of Abnormal Child Psychology. doi:10.1007/s10802011-9538-y
  27. Muthén, L. K., & Muthén, B. O. (2002). Mplus user’s guide (5th ed.). Los Angeles: Muthén and Muthén.Google Scholar
  28. Muthén, B. O., & Satorra, A. (1995). Complex sample data in structural equation modeling. In P. Marsden (Ed.), Sociological methodology (pp. 216–316). Cambridge: Blackwell.Google Scholar
  29. Nigg, J. T., Willcutt, E. G., Doyle, A. E., & Sonuga-Barke, E. J. S. (2005). Causal heterogeneity in attention-deficit/hyperactivity disorder: do we need neuropsychologically impaired subtypes? Biological Psychiatry, 57, 1224–1230.PubMedCrossRefGoogle Scholar
  30. Polderman, T. J. C., Derks, E. M., Hudziak, J. J., Verhulst, F. C., Posthuma, D., & Boomsma, D. I. (2007). Across the continuum of attention skills: a twin study of the SWAN ADHD rating scale. Journal of Child Psychology and Psychiatry, 48, 1080–1087.PubMedCrossRefGoogle Scholar
  31. Proctor, B. E., & Prevatt, F. (2009). Confirming the factor structure of attention-deficit/hyperactivity disorder symptoms in college students using student and parent data. Journal of Learning Disabilities, 42, 250–259.PubMedCrossRefGoogle Scholar
  32. Robaey, P., Amre, D., Schachar, R., & Simard, L. (2007). French version of the strengths and weaknesses of ADHD symptoms and normal behaviors (SWAN-F) questionnaire. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 16, 80–89.PubMedGoogle Scholar
  33. Sagvolden, T., Johansen, E. B., Aase, H., & Russell, V. A. (2005). A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. The Behavioral and Brain Sciences, 28, 397–419. discussion 419–468.PubMedCrossRefGoogle Scholar
  34. Satorra, A., & Bentler, P. M. (1988). Scaling corrections for chi-square statistics in covariance structure analysis. ASA Proceedings of the Business and Economic Section, 308–313.Google Scholar
  35. Schmid, J., & Leiman, J. M. (1957). The development of hierarchical factor solutions. Psychometrika, 22, 53–61.CrossRefGoogle Scholar
  36. Shaffer, D., Fisher, P., Lucas, C. P., Dulcan, M. K., & Schwab-Stone, M. E. (2000). NIMH Diagnostic Interview Schedule for Children Version IV (NIMH DISC-IV): description, differences from previous versions, and reliability of some common diagnoses. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 28–38.PubMedCrossRefGoogle Scholar
  37. So, C. Y. C., Leung, P. W. L., & Hung, S.-F. (2008). Treatment effectiveness of combined medication/behavioural treatment with chinese ADHD children in routine practice. Behaviour Research and Therapy, 46, 983–992.PubMedCrossRefGoogle Scholar
  38. Sonuga-Barke, E. (2002). Psychological heterogeneity in AD/HD—a dual pathway model of behaviour and cognition. Behavioural Brain Research, 130, 29–36.PubMedCrossRefGoogle Scholar
  39. Sonuga-Barke, E. J. S., Sergeant, J. A., Nigg, J., & Willcutt, E. (2008). Executive dysfunction and delay aversion in attention deficit hyperactivity disorder: nosologic and diagnostic implications. Child and Adolescent Psychiatric Clinics of North America, 17, 367–384.PubMedCrossRefGoogle Scholar
  40. Sonuga-Barke, E., Bitsakou, P., & Thompson, M. (2010). Beyond the dual pathway model: evidence for the dissociation of timing, inhibitory, and delay-related impairments in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 345–355.Google Scholar
  41. Stone, L. L., Otten, R., Engels, R. C. M. E., Vermulst, A. A., & Janssens, J. M. A. M. (2010). Psychometric properties of the parent and teacher versions of the Strengths and Difficulties Questionnaire for 4- to 12-year-olds: a review. Clinical Child and Family Psychology Review, 13, 254–274.PubMedCrossRefGoogle Scholar
  42. Swanson, J. M. (1995). SNAP-IV scale. Irvine: University of California Child Development Center.Google Scholar
  43. Swanson, J. M., Schuck, S., Mann, M., Carlson, C., Hartman, K., Sergeant, J. A., et al. (2001a). Over-identification of extreme behavior in the evaluation and diagnosis of ADHD/HKD. Available at: Accessed April 6, 2011.
  44. Swanson, J. M., Schuck, S., Mann, M., Carlson, C., Hartman, K., Sergeant, J. A., et al. (2001b). Categorical and dimensional definitions and evaluations of symptoms of ADHD: the SNAP and SWAN ratings scales. Available at: Accessed April 6, 2011.
  45. Toplak, M. E., Pitch, A., Flora, D. B., Iwenofu, L., Ghelani, K., Jain, U., et al. (2009). The unity and diversity of inattention and hyperactivity/impulsivity in ADHD: evidence for a general factor with separable dimensions. Journal of Abnormal Child Psychology, 37, 1137–1150.PubMedCrossRefGoogle Scholar
  46. Ullebø, A., Breivik, K., Gillberg, C., Lundervold, A., & Posserud, M. (under review). The dimensionality of ADHD in a total population of Norwegian school childen.Google Scholar
  47. Widaman, K. F., & Reise, S. P. (1997). Exploring the measurement invariance of psychological instruments: Applications in the substance use domain. In K. J. Bryant, M. Windle, & S. G. West (Eds.), The science of prevention: Methodological advances from alcohol and substance abuse research (pp. 281–325). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  48. Widaman, K. F., Ferrer, E., & Conger, R. D. (2010). Factorial invariance within longitudinal structural equation models: Measuring the same construct across time. Child Development Perspectives, 4, 10–18.PubMedCrossRefGoogle Scholar
  49. Willcutt, E. G., Nigg, J. T., Pennington, B. F., Solanto, M. V., Rohde, L. A., Tannock, R., et al. (under review). Validity of DSM-IV attention-deficit/hyperactivity disorder symptom dimensions and subtypes.Google Scholar
  50. Yu, C., & Muthén, B. (2002). Evaluation of model fit indices for latent variable models with categorical and continuous outcomes. Presented at the Annual meeting of the American Educational Research Association, New OrleansGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sébastien Normand
    • 1
  • David B. Flora
    • 2
  • Maggie E. Toplak
    • 2
  • Rosemary Tannock
    • 3
    • 4
  1. 1.Department of PsychologyUniversité du Québec en OutaouaisGatineauCanada
  2. 2.Department of PsychologyYork UniversityTorontoCanada
  3. 3.Neurosciences and Mental Health Research ProgramThe Hospital for Sick ChildrenTorontoCanada
  4. 4.Ontario Institute for Studies in EducationUniversity of TorontoTorontoCanada

Personalised recommendations