Skip to main content
Log in

Fingerprint-Based Quantum Authentication Scheme Using Encoded Graph States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We demonstrate a novel fingerprint-based quantum authentication scheme with encoded graph states. This scheme is designed to solve the practical problem in knowledge-based quantum authentication systems and could make users get rid of remembering a large of number of passwords. What’s more, it could satisfy the requirement of secure remote communication by using fingerprint-encoded graph states, which would solve the security and privacy problems existing in the traditional fingerprint identification system. Security analysis shows that the proposed scheme could effectively defend various attacks including forgery attack, intercept-resend attack and man-in-the-middle attack. And, this scheme takes advantages of the merits in terms of both fingerprint recognition and quantum authentication, rendering it more secure, convenient and practical for users than its original counterpart, knowledge-based quantum authentication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Niu, P., Chen, Y., Li, C.: Quantum authentication scheme based on entanglement swapping. Int. J. Theor. Phys. 55, 1–11 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jin, Z., Teoh, A.B.J., Ong, T., Tee, C.: A revocable fingerprint template for security and privacy preserving. Kiss Trans. Internet Inf. Syst. 4, 1327–1342 (2010)

    Google Scholar 

  3. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)

    Article  Google Scholar 

  4. Gaudiano, M., Osenda, O.: Entanglement in a spin ring with anisotropic interactions. Int. J. Quantum Inf. 13, 1550057 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dušek, M., Haderka, O., Hendrych, M., Myška, R.: Quantum identification system. Phys. Rev. A 60, 149–156 (1998)

    ADS  Google Scholar 

  6. Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication and quantum key distribution. Phys. Rev. A 62, 299–302 (2000)

    Article  Google Scholar 

  7. Zhang, Z.S., Zeng, G.H., Zhou, N.R., Xiong, J.: Quantum identity authentication based on ping-pong technique for photons. Phys. Lett. A 356, 199–205 (2006)

    Article  ADS  MATH  Google Scholar 

  8. Yuan, H., Liu, Y., Pan, G., Zhang, G., Zhou, J., Zhang, Z.: Quantum identity authentication based on ping-pong technique without entanglements. Quantum Inf. Process. 13, 2535–2549 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chang, Y., Zhang, S., Yan, L., Li, J.: Deterministic secure quantum communication and authentication protocol based on three-particle W state and quantum one-time pad. Sci. Bull. 59, 2835–2840 (2014)

    Article  Google Scholar 

  10. Naseri, M.: Revisiting quantum authentication scheme based on entanglement swapping. Int. J. Theor. Phys. 55, 2428–2435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gong, L.H., Song, H.C., He, C.S., Liu, Y., Zhou, N.R.: A continuous variable quantum deterministic key distribution based on two-mode squeezed states. Phys. Scr. 89, 035101 (2014)

    Article  ADS  Google Scholar 

  12. Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous variable two-mode squeezed vacuum states. Quantum Inf. Process. 16, 4 (2017)

    Article  ADS  MATH  Google Scholar 

  13. Huang, P., Zhu, J., Lu, Y., Zeng, G.H.: Quantum identity authentication using gaussian-modulated squeezed states. Int. J. Quantum Inf. 9, 701–721 (2011)

    Article  MATH  Google Scholar 

  14. Ma, H.X., Huang, P., Bao, W.S., Zeng, G.H.: Continuous-variable quantum identity authentication based on quantum teleportation. Quantum Inf. Process. 15, 2605–2620 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Maltoni, D., Maio, D., Jain, A., Prabhakar, K.S.: Handbook of Fingerprint Recognition. Springer, London (2009)

    Book  MATH  Google Scholar 

  16. Wang, Y., Hu, J.: Global ridge orientation modeling for partial fingerprint identification. IEEE Trans. Pattern Anal. Mach. Intell. 33, 72 (2011)

    Article  Google Scholar 

  17. Jin, Z., Teoh, A.B.J., Ong, T.S., Tee, C.: Generating revocable fingerprint template using minutiae pair representation. In: 2nd International Conference on Education Technology and Computer, pp 22–24. IEEE Press, New York (2010)

  18. Yang, W., Hu, J., Wang, S.: A delaunay quadrangle-based fingerprint authentication system with template protection using topology code for local registration and security enhancement. IEEE Trans. Inf. Forensics Secur. 9, 1179–1192 (2014)

    Article  Google Scholar 

  19. Wong, W.J., Teoh, A.B., Kho, Y.H., Wong, M.L.D.: Kernel PCA enabled bit-string representation for minutiae-based cancellable fingerprint template. Pattern Recogn. 51, 197–208 (2016)

    Article  Google Scholar 

  20. Ratha, N.K., Chikkerur, S., Connell, J.H., Bolle, R.M.: Generating cancelable fingerprint templates. IEEE Trans. Pattern Anal. Mach. Intell. 29, 561–572 (2007)

    Article  Google Scholar 

  21. Lee, C.H., Choi, C.Y., Toh, K.A.: Alignment-free cancelable fingerprint templates based on local minutiae information. IEEE Trans. Syst. Man Cybern. 37, 980–992 (2007)

    Article  Google Scholar 

  22. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lu, C.Y., Zhou, X.Q., Gühne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebe, A., Yang, T., Pan, J.: Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91–95 (2007)

    Article  Google Scholar 

  24. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169 (2005)

    Article  ADS  Google Scholar 

  25. Nest, M.V.D., Dehaene, J., Moor, B.D.: An efficient algorithm to recognize local clifford equivalence of graph states. Phys. Rev. A 70, 423–433 (2004)

    Google Scholar 

  26. Hein, M., Eisert, J., Briegel, H.J.: Multi-party Entanglement in Graph States. Phys. Rev. A 69, 666–670 (2003)

    Google Scholar 

  27. Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82, 4229–4231 (2010)

    Article  Google Scholar 

  28. Leverrier, A., Grangier, P.: Long distance quantum key distribution with continuous variables. Conf. Quantum Comput. 114, 143–152 (2011)

    MATH  Google Scholar 

  29. Papanastasiou, P., Ottaviani, C., Pirandola, S.: Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables. Phys. Rev. A 96, 042332 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Guo, Y. Fingerprint-Based Quantum Authentication Scheme Using Encoded Graph States. Int J Theor Phys 57, 3271–3283 (2018). https://doi.org/10.1007/s10773-018-3842-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3842-z

Keywords

Navigation