Skip to main content

Quantum Authentication Scheme Based on Fingerprint-Encoded Graph States

  • Conference paper
  • First Online:
Mobile Networks and Management (MONAMI 2017)

Abstract

We demonstrate an improved quantum authentication scheme which involves fingerprint recognition and quantum authentication. This scheme is designed to solve the practical problem in knowledge-based quantum authentication systems. It can satisfy the requirement of secure remote communication by using fingerprint-encoded graph states. The encoded graph states, which determine the preferred legitimate participants in the deterministic network, enable the facility of the implementable fingerprint-based authentication. The fingerprint template used for authentication in this scheme is of revocability and diversity. Security analysis shows that the proposed scheme can effectively defend various attacks including forgery attack, intercept-resend attack and man-in-the-middle attack. What’s more, this novel scheme takes advantages of the merits in terms of both fingerprint recognition and quantum authentication, rendering it more secure, convenient and practical for users than its original counterpart, knowledge-based quantum authentication.

Project supported by National Natural Science Foundation of China (Grant No. 61379153, 61572529).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Niu, P., Chen, Y., Li, C.: Quantum authentication scheme based on entanglement swapping. Int. J. Theor. Phys. 55, 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  2. Jin, Z., Teoh, A.B.J., Ong, T., Tee, C.: A revocable fingerprint template for security and privacy preserving. KISS Trans. Internet Inf. Syst. 4, 1327–1342 (2010)

    Google Scholar 

  3. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)

    Article  Google Scholar 

  4. Gaudiano, M., Osenda, O.: Entanglement in a spin ring with anisotropic interactions. Int. J. Quant. Inf. 13, 1550057 (2015)

    Article  MathSciNet  Google Scholar 

  5. Dušek, M., Haderka, O., Hendrych, M., Myška, R.: Quantum identification system. Phys. Rev. A 60, 149–156 (1998)

    Article  Google Scholar 

  6. Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication and quantum key distribution. Phys. Rev. A 62, 299–302 (2000)

    Article  Google Scholar 

  7. Zhang, Z.S., Zeng, G.H., Zhou, N.R., Xiong, J.: Quantum identity authentication based on Ping-pong technique for photons. Phys. Lett. A 356, 199–205 (2006)

    Article  Google Scholar 

  8. Yuan, H., Liu, Y., Pan, G., Zhang, G., Zhou, J., Zhang, Z.: Quantum identity authentication based on Ping-pong technique without entanglements. Quant. Inf. Process. 13, 2535–2549 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chang, Y., Zhang, S., Yan, L., Li, J.: Deterministic secure quantum communication and authentication protocol based on three-particle W state and quantum one-time pad. Sci. Bull. 59, 2835–2840 (2014)

    Article  Google Scholar 

  10. Naseri, M.: Revisiting quantum authentication scheme based on entanglement swapping. Int. J. Theoret. Phys. 55, 2428–2435 (2016)

    Article  MathSciNet  Google Scholar 

  11. Maltoni, D., Maio, D., Jain, A., Prabhakar, K.S.: Handbook of Fingerprint Recognition. Springer, London (2009). https://doi.org/10.1007/978-1-84882-254-2

    Book  MATH  Google Scholar 

  12. Wang, Y., Hu, J.: Global ridge orientation modeling for partial fingerprint identification. IEEE Trans. Pattern Anal. Mach. Intell. 33, 72 (2011)

    Article  Google Scholar 

  13. Jin, Z., Teoh, A.B.J., Ong, T.S., Tee, C.: Generating revocable fingerprint template using minutiae pair representation. In: 2nd International Conference on Education Technology and Computer, pp. 22–24. IEEE Press, New York (2010)

    Google Scholar 

  14. Yang, W., Hu, J., Wang, S.: A Delaunay quadrangle-based fingerprint authentication system with template protection using topology code for local registration and security enhancement. IEEE Trans. Inf. Forensics Secur. 9, 1179–1192 (2014)

    Article  Google Scholar 

  15. Wong, W.J., Teoh, A.B., Kho, Y.H., Wong, M.L.D.: Kernel PCA enabled bit-string representation for minutiae-based cancellable fingerprint template. Pattern Recogn. 51, 197–208 (2016)

    Article  Google Scholar 

  16. Ratha, N.K., Chikkerur, S., Connell, J.H., Bolle, R.M.: Generating cancelable fingerprint templates. IEEE Trans. Pattern Anal. Mach. Intell. 29, 561–572 (2007)

    Article  Google Scholar 

  17. Lee, C.H., Choi, C.Y., Toh, K.A.: Alignment-free cancelable fingerprint templates based on local minutiae information. IEEE Trans. Syst. Man Cybern. 37, 980–992 (2007)

    Article  Google Scholar 

  18. Thomas, A.O., Ratha, N.K., Connell, J.H., Bolle, R.M.: Comparative analysis of registration based and registration free methods for cancelable fingerprint biometrics. In: 19th International Conference on Pattern Recognition, pp. 8–11. IEEE Press, New York (2008)

    Google Scholar 

  19. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2011)

    Article  MathSciNet  Google Scholar 

  20. Lu, C.Y., Zhou, X.Q., Gühne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebe, A., Yang, T., Pan, J.: Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91–95 (2007)

    Article  Google Scholar 

  21. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169 (2005)

    Article  Google Scholar 

  22. Nest, M.V.D., Dehaene, J., Moor, B.D.: An efficient algorithm to recognize local Clifford equivalence of graph states. Phys. Rev. A 70, 423–433 (2004)

    Google Scholar 

  23. Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Phys. Rev. A 69, 666–670 (2003)

    Google Scholar 

  24. Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82, 4229–4231 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, F., Guo, Y., Hu, J. (2018). Quantum Authentication Scheme Based on Fingerprint-Encoded Graph States. In: Hu, J., Khalil, I., Tari, Z., Wen, S. (eds) Mobile Networks and Management. MONAMI 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-90775-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90775-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90774-1

  • Online ISBN: 978-3-319-90775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics