Skip to main content
Log in

Heat Capacities of l-Arginine, l-Aspartic Acid, l-Glutamic Acid, l-Glutamine, and l-Asparagine

  • Talgat Khasanshin: In Memoriam
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In an effort to establish reliable thermodynamic data for amino acids, heat capacity and phase behavior is reported for l-arginine (CAS RN: 74-79-3), l-aspartic acid (CAS RN: 56-84-8), l-glutamic acid (CAS RN: 56-86-0), l-glutamine (CAS RN: 56-85-9), and l-asparagine (CAS RN: 70-47-3). Prior to heat capacities measurement, thermogravimetric analysis was performed to determine decomposition temperatures. Crystal heat capacities of all five amino acids were measured by Tian–Calvet calorimetry in the temperature interval (262–358) K and by power compensation DSC in the temperature interval (215–451) K. Experimental values of this work were combined with the literature data obtained with adiabatic calorimetry. Low temperature heat capacities of l-arginine and l-asparagine, for which no or limited literature data were available, were measured using the relaxation (heat pulse) calorimetry. As a result, reference heat capacities and thermodynamic functions for crystalline phase from near 0 K to 450 K were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data presented in this study are available in the Supplementary information.

References

  1. V. Pokorný, C. Červinka, V. Štejfa, J. Havlín, K. Růžička, M. Fulem, J. Chem. Eng. Data 65, 1833 (2020). https://doi.org/10.1021/acs.jced.9b01086

    Article  Google Scholar 

  2. V. Pokorný, V. Štejfa, J. Havlín, K. Růžička, M. Fulem, Molecules 26, 4298 (2021). https://doi.org/10.3390/molecules26144298

    Article  Google Scholar 

  3. V. Štejfa, M. Fulem, K. Růžička, J. Chem. Phys. 151, 144504 (2019). https://doi.org/10.1063/1.5123450

    Article  ADS  Google Scholar 

  4. V. Štejfa, V. Pokorný, C. F. P. Miranda, Ó. O. P. Fernandes, L. M. Santos, ChemPhysChem 21, 938 (2020). https://doi.org/10.1002/cphc.202000078

  5. K. Drauz, I. Grayson, A. Kleemann, H.-P. Krimmer, W. Leuchtenberger, C. Weckbecker, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Hoboken, 2000)

    Google Scholar 

  6. K. Araki, T. Ozeki, Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, Hoboken, 2000)

    Google Scholar 

  7. K. Löbmann, R. Laitinen, C. Strachan, T. Rades, H. Grohganz, Eur. J. Pharm. Biopharm. 85, 882 (2013). https://doi.org/10.1016/j.ejpb.2013.03.026

    Article  Google Scholar 

  8. K. Löbmann, H. Grohganz, R. Laitinen, C. Strachan, T. Rades, Eur. J. Pharm. Biopharm. 85, 873 (2013). https://doi.org/10.1016/j.ejpb.2013.03.014

    Article  Google Scholar 

  9. E. K. Ruzzo, J.-M. Capo-Chichi, B. Ben-Zeev, D. Chitayat, H. Mao, A. L. Pappas, Y. Hitomi, Y.-F. Lu, X. Yao, F. F. Hamdan, K. Pelak, H. Reznik-Wolf, I. Bar-Joseph, D. Oz-Levi, D. Lev, T. Lerman-Sagie, E. Leshinsky-Silver, Y. Anikster, E. Ben-Asher, T. Olender, L. Colleaux, J.-C. Décarie, S. Blaser, B. Banwell, R. B. Joshi, X.-P. He, L. Patry, R. J. Silver, S. Dobrzeniecka, M. S. Islam, A. Hasnat, M. E. Samuels, D. K. Aryal, R. M. Rodriguiz, Y.-H. Jiang, W. C. Wetsel, J. O. McNamara, G. A. Rouleau, D. L. Silver, D. Lancet, E. Pras, G. A. Mitchell, J. L. Michaud, D. B. Goldstein, Neuron 80, 429 (2013). https://doi.org/10.1016/j.neuron.2013.08.013

  10. K. Růžička, V. Majer, J. Phys. Chem. Ref. Data 23, 1 (1994). https://doi.org/10.1002/aic.690420624

    Article  ADS  Google Scholar 

  11. I.M. Weiss, C. Muth, R. Drumm, H.O.K. Kirchner, BMC Biophys. 11, 2 (2018). https://doi.org/10.1186/s13628-018-0042-4

    Article  Google Scholar 

  12. G. Höhne, W. Hemminger, H.J. Flammersheim, Differential Scanning Calorimetry (Springer, London, 2003)

    Book  Google Scholar 

  13. Y.T. Suzuki, Y. Yamamura, M. Sumita, S. Yasuzuka, K. Saito, J. Phys. Chem. B 113, 10077 (2009). https://doi.org/10.1021/jp9048764

    Article  Google Scholar 

  14. J.C. Lashley, M.F. Hundley, A. Migliori, J.L. Sarrao, P.G. Pagliuso, T.W. Darling, M. Jaime, J.C. Cooley, W.L. Hults, L. Morales, D.J. Thoma, J.L. Smith, J. Boerio-Goates, B.F. Woodfield, G.R. Stewart, R.A. Fisher, N.E. Phillips, Cryogenics 43, 369 (2003). https://doi.org/10.1016/S0011-2275(03)00092-4

    Article  ADS  Google Scholar 

  15. Q. Shi, C.L. Snow, J. Boerio-Goates, B.F. Woodfield, J. Chem. Thermodyn. 42, 1107 (2010). https://doi.org/10.1016/j.jct.2010.04.008

    Article  Google Scholar 

  16. J.W. Arblaster, J. Phase Equilib. Diffus. 36, 422 (2015). https://doi.org/10.1007/s11669-015-0399-x

    Article  Google Scholar 

  17. P. Goursot, H.L. Girdhar, E.F. Westrum, J. Phys. Chem. 74, 2538 (1970). https://doi.org/10.1021/j100706a022

    Article  Google Scholar 

  18. H.M. Huffman, H. Borsook, J. Am. Chem. Soc. 54, 4297 (1932). https://doi.org/10.1021/ja01350a022

    Article  Google Scholar 

  19. J.O. Hutchens, A.G. Cole, J.W. Stout, J. Am. Chem. Soc. 82, 4813 (1960). https://doi.org/10.1021/ja01503a014

    Article  Google Scholar 

  20. T. Mahnel, V. Pokorný, M. Fulem, D. Sedmidubský, K. Růžička, J. Chem. Thermodyn. 142, 105964 (2020). https://doi.org/10.1016/j.jct.2019.105964

    Article  Google Scholar 

  21. D.G. Archer, J. Phys. Chem. Ref. Data 21, 1 (1992). https://doi.org/10.1063/1.555913

    Article  ADS  Google Scholar 

  22. H.T. Do, Y.Z. Chua, A. Kumar, D. Pabsch, M. Hallermann, D. Zaitsau, C. Schick, C. Held, RSC Adv. 10, 44205 (2020). https://doi.org/10.1039/D0RA08947H

    Article  ADS  Google Scholar 

  23. F. Rodante, G. Marrosu, G. Catalani, Thermochim. Acta 194, 197 (1992). https://doi.org/10.1016/0040-6031(92)80018-R

    Article  Google Scholar 

  24. I. Contineanu, A. Neacsu, S.T. Perisanu, Thermochim. Acta 497, 96 (2010). https://doi.org/10.1016/j.tca.2009.08.017

    Article  Google Scholar 

  25. F. Rodante, G. Marrosu, Thermochim. Acta 171, 15 (1990). https://doi.org/10.1016/0040-6031(90)87002-T

    Article  Google Scholar 

  26. M.L. Rodriguez-Mendez, F.J. Rey, J. Martin-Gil, F.J. Martin-Gil, Thermochim. Acta 134, 73 (1988). https://doi.org/10.1016/0040-6031(88)85219-5

    Article  Google Scholar 

  27. P.G. Olafsson, A.M. Bryan, Microchim. Acta 58, 871 (1970). https://doi.org/10.1007/bf01225712

    Article  Google Scholar 

  28. S. Contarini, W.W. Wendlandt, Thermochim. Acta 70, 283 (1983). https://doi.org/10.1016/0040-6031(83)80202-0

    Article  Google Scholar 

  29. M. Wesolowski, J. Erecińska, J. Therm. Anal. Calorim. 82, 307 (2005). https://doi.org/10.1007/s10973-005-0895-z

    Article  Google Scholar 

  30. E. Courvoisier, P.A. Williams, G.K. Lim, C.E. Hughes, K.D.M. Harris, Chem. Commun. 48, 2761 (2012). https://doi.org/10.1039/C2CC17203H

    Article  Google Scholar 

  31. J.L. Derissen, H.J. Endeman, A.F. Peerdeman, Acta Crystallogr. Sect. B 24, 1349 (1968). https://doi.org/10.1107/S0567740868004280

    Article  Google Scholar 

  32. S. Hirokawa, Acta Crystallogr. 8, 637 (1955). https://doi.org/10.1107/S0365110X55001990

    Article  Google Scholar 

  33. W. Cochran, B.R. Penfold, Acta Crystallogr. 5, 644 (1952). https://doi.org/10.1107/S0365110X52001775

    Article  Google Scholar 

  34. K. Yamada, D. Hashizume, T. Shimizu, S. Yokoyama, Acta Crystallogr E 63, 3802 (2007) doi:https://doi.org/10.1107/S1600536807039505

  35. H. Noriaki, S. Kunikatsu, O. Yuji, S. Yoshio, Bull. Chem. Soc. Jpn. 53, 30 (1980). https://doi.org/10.1246/bcsj.53.30

    Article  Google Scholar 

  36. F. Chemat, H. Anjum, A.M. Shariff, P. Kumar, T. Murugesan, J. Mol. Liq. 218, 301 (2016). https://doi.org/10.1016/j.molliq.2016.02.062

    Article  Google Scholar 

  37. J.O. Hutchens, A.G. Cole, R.A. Robie, J.W. Stout, J. Biol. Chem. 238, 2407 (1963). https://doi.org/10.1016/S0021-9258(19)67985-8

    Article  Google Scholar 

Download references

Funding

This research was supported from the Czech Science Foundation (GACR No. 19-02889S). V. Pokorný acknowledges the support from Specific university research Grant (No. A2_FCHI_2020_004).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by VP, EL, VŠ, JH, MF, and KR. The first draft of the manuscript was written by KR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Květoslav Růžička.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Consent for Publication

The authors consent to publication of this work in the International Journal of Thermophysics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue in Memory of Professor Talgat Khasanshin.

Supplementary Information

Below is the link to the electronic supplementary material.

10765_2021_2911_MOESM1_ESM.docx

Appendix A. Supplementary Information. The Supplementary Information is available free of charge on the journal website. The Supplementary Information contains experimental solid heat capacities measured in the frame of this work (Tables S1 to S7) and tabulated standard thermodynamic functions (heat capacity, entropy, enthalpy and Gibbs energy) for the studied amino acids (Tables S8 to S12). Supplementary file1 (DOCX 5946 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokorný, V., Lieberzeitová, E., Štejfa, V. et al. Heat Capacities of l-Arginine, l-Aspartic Acid, l-Glutamic Acid, l-Glutamine, and l-Asparagine. Int J Thermophys 42, 160 (2021). https://doi.org/10.1007/s10765-021-02911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02911-z

Keywords

Navigation