Skip to main content
Log in

Bulk Expansion Effect of Gallium-Based Thermal Interface Material

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The bulk expansion effect of gallium-based thermal interface materials (GBTIMs) was experimentally disclosed and clarified for the first time. GBTIMs were prepared under low (26 %) and high (96 %) relative humidity for a short (2 h) and long (5 h) time periods. An evident volume expansion phenomenon was observed with adequate humidity. Higher humidity resulted in bigger expansion rate and expansion coefficient. The expansion coefficient could reach surprisingly large value of 1.5 for GBTIMs under 96% relative humidity. Assuming that the volume change was related to chemical reactions in the mixture, SEM and XRD were adopted to determine the structure and phase components of the samples. The gases produced in the expansion process were detected with gas chromatography and a large amount of hydrogen was found. The results indicated that the hydrogen produced by the reaction between gallium oxide \(\hbox {Ga}_{2}\hbox {O}\) and water in GBTIMs caused the expansion effect. The corroded GBTIMs were mainly composed of gallium oxide \(\hbox {Ga}_{2}\hbox {O}_{3}\) and became loose and porous solids after expansion. Thermal conductivity decreased dramatically after the expansion process due to the composition and structure changes. From the view point of application, the ambient humidity and oxidation degree must be controlled during preparation of such thermal interface material to avoid its bulk expansion effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I. Savija, J. Culham, M. Yovanovich, E. Marotta, J. Thermophys. Heat Transf. 17, 43 (2003)

    Article  Google Scholar 

  2. Mahajan, R., Nair, R., Wakharkar, V., Swan, J., Tang, J., Vandentop, G.: Intel Technol. J 6(2) (2002)

  3. R. Prasher, Pro. IEEE. 94, 1571 (2006)

    Article  Google Scholar 

  4. J.P. Gwinn, R. Webb, Microelectron. J. 34, 215 (2003)

    Article  Google Scholar 

  5. D. Chung, J. Mater. Eng. Perform. 10, 56 (2001)

    Article  Google Scholar 

  6. G.-W. Lee, M. Park, J. Kim, J.I. Lee, H.G. Yoon, Compos. Part A-Appl. Sci. Manuf. 37, 727 (2006)

    Article  Google Scholar 

  7. Sample, J.L., Rebello, K.J., Saffarian, H., Osiander, R.: In: Proceedings of the 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, vol. 1, pp. 297–301. IEEE, Piscataway (2004)

  8. A.J. McNamara, Y. Joshi, Z.M. Zhang, Int. J. Therm. Sci. 62, 2 (2012)

    Article  Google Scholar 

  9. B.A. Cola, Electron. Cooling Mag. 16, 10–15 (2010)

    Google Scholar 

  10. V. Goyal, A.A. Balandin, Appl. Phys. Lett. 100, 073113 (2012)

    Article  ADS  Google Scholar 

  11. K.M. Shahil, A.A. Balandin, Nano Lett. 12, 861 (2012)

    Article  ADS  Google Scholar 

  12. S. Iijima, Nature. 354, 56 (1991)

    Article  ADS  Google Scholar 

  13. M. Dresselhaus, G. Dresselhaus, A. Jorio, Annu. Rev. Mater. Res. 34, 247 (2004)

    Article  ADS  Google Scholar 

  14. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  15. D. Nika, E. Pokatilov, A. Askerov, A. Balandin, Phys. Rev. B. 79, 155413 (2009)

    Article  ADS  Google Scholar 

  16. D. Nika, S. Ghosh, E. Pokatilov, A. Balandin, Appl. Phys. Lett. 94, 203103 (2009)

    Article  ADS  Google Scholar 

  17. M.M. Yovanovich, AIAA Progress in Astronautics and Aeronautics, Thermal Control and Radiation, vol. 31 (MIT press, Cambridge, 1973)

    Google Scholar 

  18. M. Lambert, L. Fletcher, J. Thermophys. Heat Transf. 7, 547 (1993)

    Article  ADS  Google Scholar 

  19. Peterson, G., Fletcher, L.: In: 26th AIAA Aerospace Sciences Meeting, Nevada, Reno (1988)

  20. Webb, R.L., Gwinn, J.P.: In: The Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM 2002, pp. 671–676. IEEE (2002)

  21. Macris, C.G., Sanderson, T.R., Ebel, R.G., Leyerle, C.B., Solutions, E.: In Proceedings IMAPS (2004)

  22. Martin, Y., Van Kessel, T.: IMAPS Thermal and Power Management, San Jose CA (2007)

  23. Hill, R.F., Strader, J.L.: In Twenty-Second Annual IEEE Semiconductor Thermal Measurement And Management Symposium, pp. 23–27. IEEE (2006)

  24. A. Hamdan, A. McLanahan, R. Richards, C. Richards, Exp. Therm. Fluid Sci. 35, 1250 (2011)

    Article  Google Scholar 

  25. Y. Gao, J. Liu, Appl. Phys. A. 107, 701 (2012)

    Article  ADS  Google Scholar 

  26. C.K. Roy, S. Bhavnani, M.C. Hamilton, R.W. Johnson, J.L. Nguyen, R.W. Knight, D.K. Harris, Int. J. Heat Mass Transf. 85, 996 (2015)

    Article  Google Scholar 

  27. Tong, T., Majumdar, A., Zhao, Y., Kashani, A., Delzeit, L., Meyyappan, M.: In Proceedings of the 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, pp. 1406–1411. IEEE, New York (2006)

  28. F. Scharmann, G. Cherkashinin, V. Breternitz, C. Knedlik, G. Hartung, T. Weber, J. Schaefer, Surf. Interface Anal. 36, 981 (2004)

    Article  Google Scholar 

  29. C. Cochran, L. Foster, J. Electrochem. Soc. 109, 149 (1962)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the funding from Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant No. 51301186) and Tsinghua University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Deng, Z., Cai, C. et al. Bulk Expansion Effect of Gallium-Based Thermal Interface Material. Int J Thermophys 38, 91 (2017). https://doi.org/10.1007/s10765-017-2226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2226-6

Keywords

Navigation