Advertisement

Bulk Expansion Effect of Gallium-Based Thermal Interface Material

  • Yujie Ding
  • Zhongshan Deng
  • Changli Cai
  • Zejun Yang
  • Yingbao Yang
  • Jinrong Lu
  • Yunxia Gao
  • Jing LiuEmail author
Article

Abstract

The bulk expansion effect of gallium-based thermal interface materials (GBTIMs) was experimentally disclosed and clarified for the first time. GBTIMs were prepared under low (26 %) and high (96 %) relative humidity for a short (2 h) and long (5 h) time periods. An evident volume expansion phenomenon was observed with adequate humidity. Higher humidity resulted in bigger expansion rate and expansion coefficient. The expansion coefficient could reach surprisingly large value of 1.5 for GBTIMs under 96% relative humidity. Assuming that the volume change was related to chemical reactions in the mixture, SEM and XRD were adopted to determine the structure and phase components of the samples. The gases produced in the expansion process were detected with gas chromatography and a large amount of hydrogen was found. The results indicated that the hydrogen produced by the reaction between gallium oxide \(\hbox {Ga}_{2}\hbox {O}\) and water in GBTIMs caused the expansion effect. The corroded GBTIMs were mainly composed of gallium oxide \(\hbox {Ga}_{2}\hbox {O}_{3}\) and became loose and porous solids after expansion. Thermal conductivity decreased dramatically after the expansion process due to the composition and structure changes. From the view point of application, the ambient humidity and oxidation degree must be controlled during preparation of such thermal interface material to avoid its bulk expansion effect.

Keywords

Bulk expansion Gallium Humidity Hydrogen generation Thermal interface material Thermal conductivity 

Notes

Acknowledgements

This work is partially supported by the funding from Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant No. 51301186) and Tsinghua University.

References

  1. 1.
    I. Savija, J. Culham, M. Yovanovich, E. Marotta, J. Thermophys. Heat Transf. 17, 43 (2003)CrossRefGoogle Scholar
  2. 2.
    Mahajan, R., Nair, R., Wakharkar, V., Swan, J., Tang, J., Vandentop, G.: Intel Technol. J 6(2) (2002)Google Scholar
  3. 3.
    R. Prasher, Pro. IEEE. 94, 1571 (2006)CrossRefGoogle Scholar
  4. 4.
    J.P. Gwinn, R. Webb, Microelectron. J. 34, 215 (2003)CrossRefGoogle Scholar
  5. 5.
    D. Chung, J. Mater. Eng. Perform. 10, 56 (2001)CrossRefGoogle Scholar
  6. 6.
    G.-W. Lee, M. Park, J. Kim, J.I. Lee, H.G. Yoon, Compos. Part A-Appl. Sci. Manuf. 37, 727 (2006)CrossRefGoogle Scholar
  7. 7.
    Sample, J.L., Rebello, K.J., Saffarian, H., Osiander, R.: In: Proceedings of the 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, vol. 1, pp. 297–301. IEEE, Piscataway (2004)Google Scholar
  8. 8.
    A.J. McNamara, Y. Joshi, Z.M. Zhang, Int. J. Therm. Sci. 62, 2 (2012)CrossRefGoogle Scholar
  9. 9.
    B.A. Cola, Electron. Cooling Mag. 16, 10–15 (2010)Google Scholar
  10. 10.
    V. Goyal, A.A. Balandin, Appl. Phys. Lett. 100, 073113 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    K.M. Shahil, A.A. Balandin, Nano Lett. 12, 861 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    S. Iijima, Nature. 354, 56 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    M. Dresselhaus, G. Dresselhaus, A. Jorio, Annu. Rev. Mater. Res. 34, 247 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    D. Nika, E. Pokatilov, A. Askerov, A. Balandin, Phys. Rev. B. 79, 155413 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    D. Nika, S. Ghosh, E. Pokatilov, A. Balandin, Appl. Phys. Lett. 94, 203103 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M.M. Yovanovich, AIAA Progress in Astronautics and Aeronautics, Thermal Control and Radiation, vol. 31 (MIT press, Cambridge, 1973)Google Scholar
  18. 18.
    M. Lambert, L. Fletcher, J. Thermophys. Heat Transf. 7, 547 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    Peterson, G., Fletcher, L.: In: 26th AIAA Aerospace Sciences Meeting, Nevada, Reno (1988)Google Scholar
  20. 20.
    Webb, R.L., Gwinn, J.P.: In: The Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM 2002, pp. 671–676. IEEE (2002)Google Scholar
  21. 21.
    Macris, C.G., Sanderson, T.R., Ebel, R.G., Leyerle, C.B., Solutions, E.: In Proceedings IMAPS (2004)Google Scholar
  22. 22.
    Martin, Y., Van Kessel, T.: IMAPS Thermal and Power Management, San Jose CA (2007)Google Scholar
  23. 23.
    Hill, R.F., Strader, J.L.: In Twenty-Second Annual IEEE Semiconductor Thermal Measurement And Management Symposium, pp. 23–27. IEEE (2006)Google Scholar
  24. 24.
    A. Hamdan, A. McLanahan, R. Richards, C. Richards, Exp. Therm. Fluid Sci. 35, 1250 (2011)CrossRefGoogle Scholar
  25. 25.
    Y. Gao, J. Liu, Appl. Phys. A. 107, 701 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    C.K. Roy, S. Bhavnani, M.C. Hamilton, R.W. Johnson, J.L. Nguyen, R.W. Knight, D.K. Harris, Int. J. Heat Mass Transf. 85, 996 (2015)CrossRefGoogle Scholar
  27. 27.
    Tong, T., Majumdar, A., Zhao, Y., Kashani, A., Delzeit, L., Meyyappan, M.: In Proceedings of the 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, pp. 1406–1411. IEEE, New York (2006)Google Scholar
  28. 28.
    F. Scharmann, G. Cherkashinin, V. Breternitz, C. Knedlik, G. Hartung, T. Weber, J. Schaefer, Surf. Interface Anal. 36, 981 (2004)CrossRefGoogle Scholar
  29. 29.
    C. Cochran, L. Foster, J. Electrochem. Soc. 109, 149 (1962)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yujie Ding
    • 1
    • 3
  • Zhongshan Deng
    • 1
    • 2
  • Changli Cai
    • 2
  • Zejun Yang
    • 2
  • Yingbao Yang
    • 2
  • Jinrong Lu
    • 1
  • Yunxia Gao
    • 1
  • Jing Liu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Cryogenics, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Yunnan Liquid Metal Valley Research CenterXuanweiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations