Skip to main content
Log in

Ghrelin Inhibits Interleukin-6 Production Induced by Cigarette Smoke Extract in the Bronchial Epithelial Cell Via NF-κB Pathway

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Cigarette smoke (CS)-induced airway inflammation is the main pathogenesis of COPD. The present study was designed to evaluate whether ghrelin, a novel growth hormone-releasing peptide, can affect the pro-inflammatory cytokine interleukin-6 (IL-6) production induced by cigarette smoke extract (CSE) in the human bronchial epithelial cell line (16-HBE) and its possible mechanism. 16-HBE cells were pre-incubated with vehicle or ghrelin (0.1 to 1000 ng/mL) in a concentration-dependent manner, and then CSE (0 to 16 %) was added. The protein levels of IL-6 in the medium were determined by ELISA, and the mRNA expressions of IL-6 was detected by RT-PCR. We also detected the phosphorylation of IKKα/β/p65 protein and the degradation of inhibitory protein-κB (I-κB) by Western blot analysis. And the generation of reactive oxygen species (ROS) in 16-HBE was evaluated by labeling specific fluorescence probes DCFH-DA. 16-HBE Cells treated with CSE (8 %) exhibited significantly higher IL-6 production compared with cells treated with vehicle alone (P < 0.05). Ghrelin suppressed CSE-induced IL-6 production at both mRNA and protein levels in a concentration-dependent manner (P < 0.05). Moreover, ghrelin attenuated CSE-triggered NF-κB activation in 16-HBE, but the intracellular ROS level after application of CSE was not affected by ghrelin (0.1 to 1000 ng/mL). Together, these results suggest that ghrelin inhibits CSE-induced IL-6 production in 16-HBE cells by targeting on NF-κB pathway, but not by scavenging intracellular ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldkorn, T., and S. Filosto. 2010. Lung injury and cancer: mechanistic insights into ceramide and EGFR signaling under cigarette smoke. American Journal of Respiratory Cell and Molecular Biology 43(3): 259–268.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Houghton, A.M., M. Mouded, and S.D. Shapiro. 2008. Common origins of lung cancer and COPD. Nature Medicine 14(10): 1023–1024.

    Article  CAS  PubMed  Google Scholar 

  3. Yu, M., X. Zheng, H. Witschi, and K.E. Pinkerton. 2002. The role of interleukin-6 in pulmonary inflammation and injury induced by exposure to environmental air pollutants. Toxicological Sciences 68(2): 488–497.

    Article  CAS  PubMed  Google Scholar 

  4. Yoshida, T., and R.M. Tuder. 2007. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiological Reviews 87(3): 1047–1082.

    Article  CAS  PubMed  Google Scholar 

  5. Liang, R., W. Zhang, and Y.M. Song. 2013. Levels of leptin and IL-6 in lungs and blood are associated with the severity of chronic obstructive pulmonary disease in patients and rat models. Molecular Medicine Reports 7(5): 1470–1476.

    CAS  PubMed  Google Scholar 

  6. Kojima, M., H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa. 1999. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762): 656–660.

    Article  CAS  PubMed  Google Scholar 

  7. Date, Y., M. Kojima, H. Hosoda, A. Sawaguchi, M.S. Mondal, T. Suganuma, et al. 2000. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141(11): 4255–4261.

    CAS  PubMed  Google Scholar 

  8. Kasimay, O., S.O. Iseri, A. Barlas, D. Bangir, C. Yegen, S. Arbak, et al. 2006. Ghrelin ameliorates pancreaticobiliary inflammation and associated remote organ injury in rats. Hepatology Research 36(1): 11–19.

    Article  CAS  PubMed  Google Scholar 

  9. Itoh, T., N. Nagaya, M. Yoshikawa, A. Fukuoka, H. Takenaka, Y. Shimizu, et al. 2004. Elevated plasma Ghrelin level in underweight patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 170(8): 879–882.

    Article  PubMed  Google Scholar 

  10. Ying, B.W., X.B. Song, H. Fan, L.L. Wang, Y.S. Li, Z. Cheng, et al. 2008. Plasma Ghrelin levels and weight loss in Chinese Uygur patients with chronic obstructive pulmonary disease. The Journal of International Medical Research 36(6): 1371–1377.

    Article  CAS  PubMed  Google Scholar 

  11. Kodama, T., J. Ashitani, N. Matsumoto, K. Kangawa, and M. Nakazato. 2008. Ghrelin treatment suppresses neutrophil-dominant inflammation in airways of patients with chronic respiratory infection. Pulmonary Pharmacology & Therapeutics 21(5): 774–779.

    Article  CAS  Google Scholar 

  12. Bouros, D., A. Tzouvelekis, S. Anevlavis, M. Doris, S. Tryfon, M. Froudarakis, et al. 2006. Smoking acutely increases plasma Ghrelin concentrations. Clinical Chemistry 52(4): 777–778.

    Article  CAS  PubMed  Google Scholar 

  13. Baldanzi, G., N. Filigheddu, S. Cutrupi, F. Catapano, S. Bonissoni, A. Fubini, et al. 2002. Ghrelin and des-acyl Ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. The Journal of Cell Biology 159(6): 1029–1037.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hou, Y., J. An, X.R. Hu, B.B. Sun, J. Lin, D. Xu, et al. 2009. Ghrelin inhibits interleukin-8 production induced by hydrogen peroxide in A549 cells via NF-kappaB pathway. International Immunopharmacology 9(1): 120–126.

    Article  CAS  PubMed  Google Scholar 

  15. Rahman, I., and W. MacNee. 1999. Lung glutathione and oxidative stress: implications in cigarette smoke-induced airway disease. The American Journal of Physiology 277(6 Pt 1): L1067–L1088.

    CAS  PubMed  Google Scholar 

  16. Sato, T., Y. Nakamura, Y. Shiimura, H. Ohgusu, K. Kangawa, and M. Kojima. 2012. Structure, regulation and function of Ghrelin. Journal of Biochemistry 151(2): 119–128.

    Article  CAS  PubMed  Google Scholar 

  17. Li, W.G., D. Gavrila, X. Liu, L. Wang, S. Gunnlaugsson, L.L. Stoll, et al. 2004. Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 109(18): 2221–2226.

    Article  CAS  PubMed  Google Scholar 

  18. El Eter, E., A. Al Tuwaijiri, H. Hagar, and M. Arafa. 2007. In vivo and in vitro antioxidant activity of Ghrelin: attenuation of gastric ischemic injury in the rat. Journal of Gastroenterology and Hepatology 22(11): 1791–1799.

    Article  PubMed  Google Scholar 

  19. Gnanapavan, S., B. Kola, S.A. Bustin, D.G. Morris, P. McGee, P. Fairclough, et al. 2002. The tissue distribution of the mRNA of Ghrelin and subtypes of its receptor, GHS-R, in humans. The Journal of Clinical Endocrinology and Metabolism 87(6): 2988.

    Article  CAS  PubMed  Google Scholar 

  20. Wu, R., W. Dong, M. Zhou, F. Zhang, C.P. Marini, T.S. Ravikumar, et al. 2007. Ghrelin attenuates sepsis-induced acute lung injury and mortality in rats. American Journal of Respiratory and Critical Care Medicine 176(8): 805–813.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Henriques-Coelho, T., J. Correia-Pinto, R. Roncon-Albuquerque Jr., M.J. Baptista, A.P. Lourenco, S.M. Oliveira, et al. 2004. Endogenous production of Ghrelin and beneficial effects of its exogenous administration in monocrotaline-induced pulmonary hypertension. American Journal of Physiology. Heart and Circulatory Physiology 287(6): H2885–H2890.

    Article  CAS  PubMed  Google Scholar 

  22. Xu, Y.P., J.J. Zhu, F. Cheng, K.W. Jiang, W.Z. Gu, Z. Shen, et al. 2011. Ghrelin ameliorates hypoxia-induced pulmonary hypertension via phospho-GSK3 beta/beta-catenin signaling in neonatal rats. Journal of Molecular Endocrinology 47(1): 33–43.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrari, R., S.E. Tanni, L.M. Caram, C. Correa, C.R. Correa, and I. Godoy. 2013. Three-year follow-up of interleukin 6 and C-reactive protein in chronic obstructive pulmonary disease. Respiratory Research 14: 24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kode, A., S.R. Yang, and I. Rahman. 2006. Differential effects of cigarette smoke on oxidative stress and proinflammatory cytokine release in primary human airway epithelial cells and in a variety of transformed alveolar epithelial cells. Respiratory Research 7: 132.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Beisswenger, C., J. Platz, C. Seifart, C. Vogelmeier, and R. Bals. 2004. Exposure of differentiated airway epithelial cells to volatile smoke in vitro. Respiration 71(4): 402–409.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, Y., Y. Xu, Y. Li, W. Xu, F. Luo, B. Wang, et al. 2013. NF-kappaB-mediated inflammation leading to EMT via miR-200c is involved in cell transformation induced by cigarette smoke extract. Toxicological Sciences 135(2): 265–276.

    Article  CAS  PubMed  Google Scholar 

  27. Rahman, I., S.K. Biswas, and A. Kode. 2006. Oxidant and antioxidant balance in the airways and airway diseases. European Journal of Pharmacology 533(1–3): 222–239.

    Article  CAS  PubMed  Google Scholar 

  28. Dixit, V.D., E.M. Schaffer, R.S. Pyle, G.D. Collins, S.K. Sakthivel, R. Palaniappan, et al. 2004. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. The Journal of Clinical Investigation 114(1): 57–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Vanden Berghe, W., L. Vermeulen, G. De Wilde, K. De Bosscher, E. Boone, and G. Haegeman. 2000. Signal transduction by tumor necrosis factor and gene regulation of the inflammatory cytokine interleukin-6. Biochemical Pharmacology 60(8): 1185–1195.

    Article  CAS  PubMed  Google Scholar 

  30. Adachi, S., S. Takiguchi, K. Okada, K. Yamamoto, M. Yamasaki, H. Miyata, et al. 2010. Effects of Ghrelin administration after total gastrectomy: a prospective, randomized, placebo-controlled phase II study. Gastroenterology 138(4): 1312–1320.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants 30900658 from the National Natural Science Foundation of China (NSFC) to Dr. Binwu Ying, 81300011 from the NSFC to Dr. Ting Yang, 31171103 and 81230001 from the NSFC and 06–834 from the China Medical Board of New York to Dr Fuqiang Wen.

Conflicts of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binwu Ying.

Additional information

Hao Wang, Ting Yang and Yongchun Shen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yang, T., Shen, Y. et al. Ghrelin Inhibits Interleukin-6 Production Induced by Cigarette Smoke Extract in the Bronchial Epithelial Cell Via NF-κB Pathway. Inflammation 39, 190–198 (2016). https://doi.org/10.1007/s10753-015-0238-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0238-6

KEY WORDS

Navigation