Skip to main content

Advertisement

Log in

NPS2143 Inhibits MUC5AC and Proinflammatory Mediators in Cigarette Smoke Extract (CSE)-Stimulated Human Airway Epithelial Cells

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Mucus overproduction is a fundamental hallmark of COPD that is caused by exposure to cigarette smoke. MUC5AC is one of the main mucin genes expressed in the respiratory epithelium, and its transcriptional upregulation often correlates with increased mucus secretion. Calcium-sensing receptor (CaSR) antagonists have been reported to possess anti-inflammatory effects. The purpose of the present study was to investigate the protective role of NPS2143, a selective CaSR antagonist on cigarette smoke extract (CSE)-stimulated NCI-H292 mucoepidermoid human lung cells. Treatment of NPS2143 significantly inhibited the expression of MUC5AC in CSE-stimulated H292 cells. NPS2143 reduced the expression of MMP-9 in CSE-stimulated H292 cells. NPS2143 also decreased the release of proinflammatory cytokines such as IL-6 and TNF-α in CSE-stimulated H292 cells. Furthermore, NPS2143 attenuated the activation of MAPKs (JNK, p38, and ERK) and inhibited the nuclear translocation of NF-κB in CSE-stimulated H292 cells. These results indicate that NPS2143 had a therapeutic potential in COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CaSR:

Calcium sensing receptor

COPD:

Chronic obstructive pulmonary disease

CSE:

Cigarette smoke extract

MUC5AC:

Mucin 5AC

MMP-9:

Matrix-metalloproteinase 9

IL-6:

Interleukin 6

TNF-α:

Tumor necrosis factor α

MAPKs:

Mitogen-activated protein kinases

NF-κB:

Nuclear factor-κB

References

  1. Rycroft, C.E., A. Heyes, L. Lanza, and K. Becker. 2012. Epidemiology of chronic obstructive pulmonary disease: A literature review. International Journal of Chronic Obstructive Pulmonary Disease 7: 457–494. doi:10.2147/COPD.S32330.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vestbo, J., S.S. Hurd, A.G. Agusti, P.W. Jones, C. Vogelmeier, A. Anzueto, P.J. Barnes, L.M. Fabbri, F.J. Martinez, M. Nishimura, R.A. Stockley, D.D. Sin, and R. Rodriguez-Roisin. 2013. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American Journal of Respiratory and Critical Care Medicine 187: 347–365. doi:10.1164/rccm.201204-0596PP.

    Article  CAS  PubMed  Google Scholar 

  3. Shin, I.S., N.R. Shin, J.W. Park, C.M. Jeon, J.M. Hong, O.K. Kwon, J.S. Kim, I.C. Lee, J.C. Kim, S.R. Oh, and K.S. Ahn. 2015. Melatonin attenuates neutrophil inflammation and mucus secretion in cigarette smoke-induced chronic obstructive pulmonary diseases via the suppression of Erk-Sp1 signaling. Journal of Pineal Research 58: 50–60. doi:10.1111/jpi.12192.

    Article  CAS  PubMed  Google Scholar 

  4. Chapman, K.R., D.M. Mannino, J.B. Soriano, P.A. Vermeire, A.S. Buist, M.J. Thun, C. Connell, A. Jemal, T.A. Lee, M. Miravitlles, S. Aldington, and R. Beasley. 2006. Epidemiology and costs of chronic obstructive pulmonary disease. European Respiratory Journal 27: 188–207. doi:10.1183/09031936.06.00024505.

    Article  CAS  PubMed  Google Scholar 

  5. Spurzem, J.R., and S.I. Rennard. 2005. Pathogenesis of COPD. Seminars in Respiratory and Critical Care Medicine 26: 142–153. doi:10.1055/s-2005-869535.

    Article  PubMed  Google Scholar 

  6. Gao, W., C. Yuan, J. Zhang, L. Li, L. Yu, C.H. Wiegman, P.J. Barnes, I.M. Adcock, M. Huang, and X. Yao. 2015. Klotho expression is reduced in COPD airway epithelial cells: Effects on inflammation and oxidant injury. Clinical Science (London) 129: 1011–1023. doi:10.1042/CS20150273.

    Article  CAS  Google Scholar 

  7. Ehre, C., E.N. Worthington, R.M. Liesman, B.R. Grubb, D. Barbier, W.K. O’Neal, J.M. Sallenave, R.J. Pickles, and R.C. Boucher. 2012. Overexpressing mouse model demonstrates the protective role of Muc5ac in the lungs. Proceedings of the National Academy of Sciences of the United States of America 109: 16528–16533. doi:10.1073/pnas.1206552109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Caramori, G., C. Di Gregorio, I. Carlstedt, P. Casolari, I. Guzzinati, I.M. Adcock, P.J. Barnes, A. Ciaccia, G. Cavallesco, K.F. Chung, and A. Papi. 2004. Mucin expression in peripheral airways of patients with chronic obstructive pulmonary disease. Histopathology 45: 477–484. doi:10.1111/j.1365-2559.2004.01952.x.

    Article  CAS  PubMed  Google Scholar 

  9. Shin, I.S., J.W. Park, N.R. Shin, C.M. Jeon, O.K. Kwon, M.Y. Lee, H.S. Kim, J.C. Kim, S.R. Oh, and K.S. Ahn. 2014. Melatonin inhibits MUC5AC production via suppression of MAPK signaling in human airway epithelial cells. Journal of Pineal Research 56: 398–407. doi:10.1111/jpi.12127.

    Article  CAS  PubMed  Google Scholar 

  10. Papakonstantinou, E., G. Karakiulakis, S. Batzios, S. Savic, M. Roth, M. Tamm, and D. Stolz. 2015. Acute exacerbations of COPD are associated with significant activation of matrix metalloproteinase 9 irrespectively of airway obstruction, emphysema and infection. Respiratory Research 16: 78. doi:10.1186/s12931-015-0240-4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Abd El-Fatah, M.F., M.A. Ghazy, M.S. Mostafa, M.M. El-Attar, and A.O. Egiza. 2015. Identification of MMP-9 as a biomarker for detecting progression of chronic obstructive pulmonary disease. Biochemistry and Cell Biology 1–7. doi:10.1139/bcb-2015-0073.

  12. Chung, K.F. 2001. Cytokines in chronic obstructive pulmonary disease. The European Respiratory Journal Supplement 34: 50s–59s.

    Article  CAS  PubMed  Google Scholar 

  13. Tanni, S.E., N.R. Pelegrino, A.Y. Angeleli, C. Correa, and I. Godoy. 2010. Smoking status and tumor necrosis factor-alpha mediated systemic inflammation in COPD patients. Journal of Inflammation (London) 7: 29. doi:10.1186/1476-9255-7-29.

    Article  Google Scholar 

  14. Edwards, M.R., N.W. Bartlett, D. Clarke, M. Birrell, M. Belvisi, and S.L. Johnston. 2009. Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacology and Therapeutics 121: 1–13. doi:10.1016/j.pharmthera.2008.09.003.

    Article  CAS  PubMed  Google Scholar 

  15. Kraft, M., K.B. Adler, J.L. Ingram, A.L. Crews, T.P. Atkinson, C.B. Cairns, D.C. Krause, and H.W. Chu. 2008. Mycoplasma pneumoniae induces airway epithelial cell expression of MUC5AC in asthma. European Respiratory Journal 31: 43–46. doi:10.1183/09031936.00103307.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, J.W., N.R. Shin, J.W. Park, S.Y. Park, O.K. Kwon, H.S. Lee, J. Hee Kim, H.J. Lee, J. Lee, Z.Y. Zhang, S.R. Oh, and K.S. Ahn. 2015. Callicarpa japonica Thunb. attenuates cigarette smoke-induced neutrophil inflammation and mucus secretion. Journal of Ethnopharmacology 175: 1–8. doi:10.1016/j.jep.2015.08.056.

    Article  PubMed  Google Scholar 

  17. Nie, Y.C., H. Wu, P.B. Li, Y.L. Luo, C.C. Zhang, J.G. Shen, and W.W. Su. 2012. Characteristic comparison of three rat models induced by cigarette smoke or combined with LPS: to establish a suitable model for study of airway mucus hypersecretion in chronic obstructive pulmonary disease. Pulmonary Pharmacology & Therapeutics 25: 349–356. doi:10.1016/j.pupt.2012.06.004.

    Article  CAS  Google Scholar 

  18. Wang, H.Y., X.Y. Liu, G. Han, Z.Y. Wang, X.X. Li, Z.M. Jiang, and C.M. Jiang. 2013. LPS induces cardiomyocyte injury through calcium-sensing receptor. Molecular and Cellular Biochemistry 379: 153–159. doi:10.1007/s11010-013-1637-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Drueke, T.B. 2004. Modulation and action of the calcium-sensing receptor. Nephrology, Dialysis, Transplantation 19(Suppl 5): V20–V26. doi:10.1093/ndt/gfh1052.

    Article  CAS  PubMed  Google Scholar 

  20. Kos, C.H., A.C. Karaplis, J.B. Peng, M.A. Hediger, D. Goltzman, K.S. Mohammad, T.A. Guise, and M.R. Pollak. 2003. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. Journal of Clinical Investigation 111: 1021–1028. doi:10.1172/JCI17416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, G.S., N. Subramanian, A.I. Kim, I. Aksentijevich, R. Goldbach-Mansky, D.B. Sacks, R.N. Germain, D.L. Kastner, and J.J. Chae. 2012. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492: 123–127. doi:10.1038/nature11588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, C.L., Q.Y. Wu, J.J. Du, J.Y. Zeng, T.T. Li, C.Q. Xu, and Y.H. Sun. 2015. Calcium-sensing receptor in the T lymphocyte enhanced the apoptosis and cytokine secretion in sepsis. Molecular Immunology 63: 337–342. doi:10.1016/j.molimm.2014.08.007.

    Article  CAS  PubMed  Google Scholar 

  23. Tanday, S. 2015. Calcium-sensing receptors linked to development of asthma. The Lancet Respiratory Medicine 3: 428. doi:10.1016/S2213-2600(15)00193-9.

    Article  CAS  PubMed  Google Scholar 

  24. Yarova, P.L., A.L. Stewart, V. Sathish, R.D. Britt Jr., A.P.P.L. Thompson MA, M. Freeman, B. Aravamudan, H. Kita, S.C. Brennan, M. Schepelmann, T. Davies, S. Yung, Z. Cholisoh, E.J. Kidd, W.R. Ford, K.J. Broadley, K. Rietdorf, W. Chang, M.E. Bin Khayat, D.T. Ward, J.P.T.W. Corrigan CJ, P.J. Kemp, C.M. Pabelick, Y.S. Prakash, and D. Riccardi. 2015. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma. Science Translational Medicine 7: 284ra60. doi:10.1126/scitranslmed.aaa0282.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Park, J.W., O.K. Kwon, J.H. Kim, S.R. Oh, J.H. Kim, J.H. Paik, B. Marwoto, R. Widjhati, F. Juniarti, D. Irawan, and K.S. Ahn. 2015. Rhododendron album Blume inhibits iNOS and COX-2 expression in LPS-stimulated RAW264.7 cells through the downregulation of NF-kappaB signaling. International Journal of Molecular Medicine 35: 987–994. doi:10.3892/ijmm.2015.2107.

    PubMed  Google Scholar 

  26. Liu, C., D. Weir, P. Busse, N. Yang, Z. Zhou, C. Emala, and X.M. Li. 2015. The flavonoid 7,4′-Dihydroxyflavone inhibits MUC5AC gene expression, production, and secretion via regulation of NF-kappaB, STAT6, and HDAC2. Phytotherapy Research 29: 925–932. doi:10.1002/ptr.5334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caramori, G., P. Casolari, C. Di Gregorio, M. Saetta, S. Baraldo, P. Boschetto, K. Ito, L.M. Fabbri, P.J. Barnes, I.M. Adcock, G. Cavallesco, K.F. Chung, and A. Papi. 2009. MUC5AC expression is increased in bronchial submucosal glands of stable COPD patients. Histopathology 55: 321–331. doi:10.1111/j.1365-2559.2009.03377.x.

    Article  PubMed  Google Scholar 

  28. Cortijo, J., M. Mata, J. Milara, E. Donet, A. Gavalda, M. Miralpeix, and E.J. Morcillo. 2011. Aclidinium inhibits cholinergic and tobacco smoke-induced MUC5AC in human airways. European Respiratory Journal 37: 244–254. doi:10.1183/09031936.00182009.

    Article  CAS  PubMed  Google Scholar 

  29. Park, J.W., I.C. Lee, N.R. Shin, C.M. Jeon, O.K. Kwon, J.W. Ko, J.C. Kim, S.R. Oh, I.S. Shin, and K.S. Ahn. 2015. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling. Nanotoxicology 1–8. doi:10.3109/17435390.2015.1078851.

  30. Ishikawa, N., N. Hattori, N. Kohno, A. Kobayashi, T. Hayamizu, and M. Johnson. 2015. Airway inflammation in Japanese COPD patients compared with smoking and nonsmoking controls. International Journal of Chronic Obstructive Pulmonary Disease 10: 185–192. doi:10.2147/COPD.S74557.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lappalainen, U., J.A. Whitsett, S.E. Wert, J.W. Tichelaar, and K. Bry. 2005. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. American Journal of Respiratory Cell and Molecular Biology 32: 311–318. doi:10.1165/rcmb.2004-0309OC.

    Article  CAS  PubMed  Google Scholar 

  32. Broom, O.J., B. Widjaya, J. Troelsen, J. Olsen, and O.H. Nielsen. 2009. Mitogen activated protein kinases: A role in inflammatory bowel disease? Clinical and Experimental Immunology 158: 272–280. doi:10.1111/j.1365-2249.2009.04033.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park, J.W., I.S. Shin, U.H. Ha, J.H. Kim, and K.S. Ahn. 2015. Pathophysiological changes induced by pseudomonas aeruginosa infection are involved in MMP-12 and MMP-13 upregulation in human carcinoma epithelial cells and a pneumonia mouse model. Infection and Immunity. doi:10.1128/IAI.00619-15.

    Google Scholar 

  34. Wu, Y.L., A.H. Lin, C.H. Chen, W.C. Huang, H.Y. Wang, M.H. Liu, T.S. Lee, and Y. Ru Kou. 2014. Glucosamine attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling. Free Radical Biology and Medicine 69: 208–218. doi:10.1016/j.freeradbiomed.2014.01.026.

    Article  CAS  PubMed  Google Scholar 

  35. Binker, M.G., M.J. Binker-Cosen, D. Richards, A.A. Binker-Cosen, S.D. Freedman, and L.I. Cosen-Binker. 2015. Omega-3 PUFA docosahexaenoic acid decreases LPS-stimulated MUC5AC production by altering EGFR-related signaling in NCI-H292 cells. Biochemical and Biophysical Research Communications 463: 1047–1052. doi:10.1016/j.bbrc.2015.06.056.

    Article  CAS  PubMed  Google Scholar 

  36. Pera, T., A.B. Zuidhof, M. Smit, M.H. Menzen, T. Klein, G. Flik, J. Zaagsma, H. Meurs, and H. Maarsingh. 2014. Arginase inhibition prevents inflammation and remodeling in a guinea pig model of chronic obstructive pulmonary disease. Journal of Pharmacology and Experimental Therapeutics 349: 229–238. doi:10.1124/jpet.113.210138.

    Article  CAS  PubMed  Google Scholar 

  37. Yu, Q., X. Chen, X. Fang, Q. Chen, and C. Hu. 2015. Caveolin-1 aggravates cigarette smoke extract-induced MUC5AC secretion in human airway epithelial cells. International Journal of Molecular Medicine 35: 1435–1442. doi:10.3892/ijmm.2015.2133.

    CAS  PubMed  Google Scholar 

  38. Montalbano, A.M., G.D. Albano, G. Anzalone, A. Bonanno, L. Riccobono, C. Di Sano, R. Gagliardo, L. Siena, M.P. Pieper, M. Gjomarkaj, and M. Profita. 2014. Cigarette smoke alters non-neuronal cholinergic system components inducing MUC5AC production in the H292 cell line. European Journal of Pharmacology 736: 35–43. doi:10.1016/j.ejphar.2014.04.022.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, G., Z. Xu, R. Wang, M. Al-Hijji, J. Salit, Y. Strulovici-Barel, A.E. Tilley, J.G. Mezey, and R.G. Crystal. 2012. Genes associated with MUC5AC expression in small airway epithelium of human smokers and non-smokers. BMC Medical Genomics 5: 21. doi:10.1186/1755-8794-5-21.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kanai, K., A. Koarai, Y. Shishikura, H. Sugiura, T. Ichikawa, T. Kikuchi, K. Akamatsu, T. Hirano, M. Nakanishi, K. Matsunaga, Y. Minakata, and M. Ichinose. 2015. Cigarette smoke augments MUC5AC production via the TLR3-EGFR pathway in airway epithelial cells. Respiratory Investigation 53: 137–148. doi:10.1016/j.resinv.2015.01.007.

    Article  PubMed  Google Scholar 

  41. Lee, H.J., H.S. Seo, J. Ryu, Y.P. Yoon, S.H. Park, and C.J. Lee. 2015. Luteolin inhibited the gene expression, production and secretion of MUC5AC mucin via regulation of nuclear factor kappa B signaling pathway in human airway epithelial cells. Pulmonary Pharmacology & Therapeutics 31: 117–122. doi:10.1016/j.pupt.2014.09.008.

    Article  CAS  Google Scholar 

  42. Lee, S.U., M.H. Sung, H.W. Ryu, J. Lee, H.S. Kim, H.J. In, K.S. Ahn, H.J. Lee, H.K. Lee, D.H. Shin, Y. Lee, S.T. Hong, and S.R. Oh. 2015. Verproside inhibits TNF-alpha-induced MUC5AC expression through suppression of the TNF-alpha/NF-kappaB pathway in human airway epithelial cells. Cytokine. doi:10.1016/j.cyto.2015.08.262.

    PubMed Central  Google Scholar 

  43. Mata, M., B. Sarria, A. Buenestado, J. Cortijo, M. Cerda, and E.J. Morcillo. 2005. Phosphodiesterase 4 inhibition decreases MUC5AC expression induced by epidermal growth factor in human airway epithelial cells. Thorax 60: 144–152. doi:10.1136/thx.2004.025692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Erle, D.J., and D. Sheppard. 2014. The cell biology of asthma. Journal of Cell Biology 205: 621–631. doi:10.1083/jcb.201401050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lai, H., and D.F. Rogers. 2010. New pharmacotherapy for airway mucus hypersecretion in asthma and COPD: targeting intracellular signaling pathways. Journal of Aerosol Medicine and Pulmonary Drug Delivery 23: 219–231. doi:10.1089/jamp.2009.0802.

    Article  CAS  PubMed  Google Scholar 

  46. Cane, J.L., B. Mallia-Millanes, D.L. Forrester, A.J. Knox, C.E. Bolton, and S.R. Johnson. 2015. Matrix metalloproteinases -8 and -9 in the airways, blood and urine during exacerbations of COPD. Chronic Obstructive Pulmonary Disease 1–10. doi:10.3109/15412555.2015.1043522.

  47. Abd El-Fatah, M.F., M.A. Ghazy, M.S. Mostafa, M.M. El-Attar, and A. Osman. 2015. Identification of MMP-9 as a biomarker for detecting progression of chronic obstructive pulmonary disease. Biochemistry and Cell Biology 1–7. doi:10.1139/bcb-2015-0073.

  48. Higashimoto, Y., Y. Yamagata, S. Taya, T. Iwata, M. Okada, T. Ishiguchi, H. Sato, and H. Itoh. 2008. Systemic inflammation in chronic obstructive pulmonary disease and asthma: Similarities and differences. Respirology 13: 128–133. doi:10.1111/j.1440-1843.2007.01170.x.

    PubMed  Google Scholar 

  49. Gan, W.Q., S.F. Man, A. Senthilselvan, and D.D. Sin. 2004. Association between chronic obstructive pulmonary disease and systemic inflammation: A systematic review and a meta-analysis. Thorax 59: 574–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo, L., T. Wang, Y. Wu, Z. Yuan, J. Dong, X. Li, J. An, Z. Liao, X. Zhang, D. Xu, and F.Q. Wen. 2015. WNT/beta-catenin signaling regulates cigarette smoke-induced airway inflammation via the PPARdelta/p38 pathway. Laboratory Investigation. doi:10.1038/labinvest.2015.101.

    Google Scholar 

  51. Pedroza, M., D.J. Schneider, H. Karmouty-Quintana, J. Coote, S. Shaw, R. Corrigan, J.G. Molina, J.L. Alcorn, D. Galas, R. Gelinas, and M.R. Blackburn. 2011. Interleukin-6 contributes to inflammation and remodeling in a model of adenosine mediated lung injury. PLoS One 6, e22667. doi:10.1371/journal.pone.0022667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, W., Y. Liu, Z. Wang, T. Yu, Q. Lu, and H. Chen. 2015. Suppression of MAPK and NF-kappa B pathways by schisandrin B contributes to attenuation of DSS-induced mice model of inflammatory bowel disease. Pharmazie 70: 598–603.

    PubMed  Google Scholar 

  53. Ma, W.J., Y.H. Sun, J.X. Jiang, X.W. Dong, J.Y. Zhou, and Q.M. Xie. 2015. Epoxyeicosatrienoic acids attenuate cigarette smoke extract-induced interleukin-8 production in bronchial epithelial cells. Prostaglandins, Leukotrienes, and Essential Fatty Acids 94: 13–19. doi:10.1016/j.plefa.2014.10.006.

    Article  CAS  PubMed  Google Scholar 

  54. Moon, H.G., Y. Zheng, C.H. An, Y.K. Kim, and Y. Jin. 2013. CCN1 secretion induced by cigarette smoking extracts augments IL-8 release from bronchial epithelial cells. PLoS One 8, e68199. doi:10.1371/journal.pone.0068199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ng, D.S., W. Liao, W.S. Tan, T.K. Chan, X.Y. Loh, and W.S. Wong. 2014. Anti-malarial drug artesunate protects against cigarette smoke-induced lung injury in mice. Phytomedicine 21: 1638–1644. doi:10.1016/j.phymed.2014.07.018.

    Article  CAS  PubMed  Google Scholar 

  56. Monzon, M.E., R.M. Forteza, and S.M. Casalino-Matsuda. 2011. MCP-1/CCR2B-dependent loop upregulates MUC5AC and MUC5B in human airway epithelium. American Journal of Physiology - Lung Cellular and Molecular Physiology 300: L204–L215. doi:10.1152/ajplung.00292.2010.

    Article  CAS  PubMed  Google Scholar 

  57. Lee, H., J.R. Park, E.J. Kim, W.J. Kim, S.H. Hong, S.M. Park, and S.R. Yang. 2016. Cigarette smoke-mediated oxidative stress induces apoptosis via the MAPKs/STAT1 pathway in mouse lung fibroblasts. Toxicology Letters 240: 140–148. doi:10.1016/j.toxlet.2015.10.030.

    Article  CAS  PubMed  Google Scholar 

  58. Guo, L., T. Wang, Y. Wu, Z. Yuan, J. Dong, X. Li, J. An, Z. Liao, X. Zhang, D. Xu, and F.Q. Wen. 2016. WNT/beta-catenin signaling regulates cigarette smoke-induced airway inflammation via the PPARdelta/p38 pathway. Laboratory Investigation 96: 218–229. doi:10.1038/labinvest.2015.101.

    Article  CAS  PubMed  Google Scholar 

  59. Atkinson, J.J., B.A. Lutey, Y. Suzuki, H.M. Toennies, D.G. Kelley, D.K. Kobayashi, W.G. Ijem, G. Deslee, C.H. Moore, M.E. Jacobs, S.H. Conradi, D.S. Gierada, R.A. Pierce, T. Betsuyaku, and R.M. Senior. 2011. The role of matrix metalloproteinase-9 in cigarette smoke-induced emphysema. American Journal of Respiratory and Critical Care Medicine 183: 876–884. doi:10.1164/rccm.201005-0718OC.

    Article  CAS  PubMed  Google Scholar 

  60. Ogata, S., Y. Kubota, S. Satoh, S. Ito, H. Takeuchi, M. Ashizuka, and K. Shirasuna. 2006. Ca2+ stimulates COX-2 expression through calcium-sensing receptor in fibroblasts. Biochemical and Biophysical Research Communications 351: 808–814. doi:10.1016/j.bbrc.2006.10.098.

    Article  CAS  PubMed  Google Scholar 

  61. Schuliga, M. 2015. NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules 5: 1266–1283. doi:10.3390/biom5031266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee, J.W., J.H. Kwon, M.S. Lim, H.J. Lee, S.S. Kim, S.Y. Lim, and W. Chun. 2014. 3,4,5-Trihydroxycinnamic acid increases heme-oxygenase-1 (HO-1) and decreases macrophage infiltration in LPS-induced septic kidney. Molecular and Cellular Biochemistry 397: 109–116. doi:10.1007/s11010-014-2177-1.

    Article  CAS  PubMed  Google Scholar 

  63. Shin, I.S., K.S. Ahn, N.R. Shin, H.J. Lee, H.W. Ryu, J.W. Kim, K.Y. Sohn, H.J. Kim, Y.H. Han, and S.R. Oh. 2016. Protective effect of EC-18, a synthetic monoacetyldiglyceride on lung inflammation in a murine model induced by cigarette smoke and lipopolysaccharide. International Immunopharmacology 30: 62–68. doi:10.1016/j.intimp.2015.11.025.

    Article  CAS  PubMed  Google Scholar 

  64. Fujisawa, T., S. Velichko, P. Thai, L.Y. Hung, F. Huang, and R. Wu. 2009. Regulation of airway MUC5AC expression by IL-1beta and IL-17A; the NF-kappaB paradigm. Journal of Immunology 183: 6236–6243. doi:10.4049/jimmunol.0900614.

    Article  CAS  Google Scholar 

  65. Syed, D.N., F. Afaq, M.H. Kweon, N. Hadi, N. Bhatia, V.S. Spiegelman, and H. Mukhtar. 2007. Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-kappaB activation in normal human bronchial epithelial cells. Oncogene 26: 673–682. doi:10.1038/sj.onc.1209829.

    Article  CAS  PubMed  Google Scholar 

  66. Xue, H., K. Sun, W. Xie, G. Hu, H. Kong, Q. Wang, and H. Wang. 2012. Etanercept attenuates short-term cigarette-smoke-exposure-induced pulmonary arterial remodelling in rats by suppressing the activation of TNF-a/NF-kB signal and the activities of MMP-2 and MMP-9. Pulmonary Pharmacology & Therapeutics 25: 208–215.

    Article  CAS  Google Scholar 

  67. Rossol, M., M. Pierer, N. Raulien, D. Quandt, U. Meusch, K. Rothe, K. Schubert, T. Schoneberg, M. Schaefer, U. Krugel, S. Smajilovic, H. Brauner-Osborne, C. Baerwald, and U. Wagner. 2012. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nature Communications 3: 1329. doi:10.1038/ncomms2339.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Xi, Y.H., H.Z. Li, W.H. Zhang, L.N. Wang, L. Zhang, Y. Lin, S.Z. Bai, H.X. Li, L.Y. Wu, R. Wang, and C.Q. Xu. 2010. The functional expression of calcium-sensing receptor in the differentiated THP-1 cells. Molecular and Cellular Biochemistry 342: 233–240. doi:10.1007/s11010-010-0489-3.

    Article  CAS  PubMed  Google Scholar 

  69. Cifuentes, M., C. Fuentes, N. Tobar, I. Acevedo, E. Villalobos, E. Hugo, N. Ben-Jonathan, and M. Reyes. 2012. Calcium sensing receptor activation elevates proinflammatory factor expression in human adipose cells and adipose tissue. Molecular and Cellular Endocrinology 361: 24–30. doi:10.1016/j.mce.2012.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the KRIBB Research Initiative Program (KGM 1221622) and the Ministry of Health and Welfare (HI14C1277) of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sei-Ryang Oh or Kyoung-Seop Ahn.

Additional information

Jae-Won Lee and Ji-Won Park contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JW., Park, JW., Kwon, OK. et al. NPS2143 Inhibits MUC5AC and Proinflammatory Mediators in Cigarette Smoke Extract (CSE)-Stimulated Human Airway Epithelial Cells. Inflammation 40, 184–194 (2017). https://doi.org/10.1007/s10753-016-0468-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0468-2

KEY WORDS

Navigation