Skip to main content

Advertisement

Log in

Seasonal multi-annual trends in energy densities of the midges (genus Chironomus) in a Mediterranean temporary wetland (Natural Regional Reserve of the Isonzo River Mouth, Northeast Italy)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The present study is an attempt to deepen the knowledge about energy patterns in a detritus-based ecosystem located within a temporary wetland, where changes of water level can affect productivity, turnover of organic matter and the flow-through energy. Energy density was directly measured using an adiabatic bomb calorimeter in samples collected in autumn, spring and summer. Dipterans belonging to the genus Chironomus were the most common and representative invertebrates within the study area. Starting from these measures, a predictive model based on the relationship between energy density and percentage of dry weight was developed, validated and applied to build a multi-annual dataset. This model was used to investigate seasonal energy density trends on longer time-scale, in relation to physical and chemical features, weather conditions and decomposition dynamics. The used approach allowed to build a 3-year dataset and to identify clear seasonal trends; moreover, the application of the model highlighted patterns in relation to precipitation regime, decomposition dynamics and the effects due to variations of these features in the investigated temporary detritus-based system over a multi-annual scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Bertoli et al. (2016)

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adhikari, S., R. M. Bajracharaya & B. K. Sitaula, 2009. A review of carbon dynamics and sequestration in wetlands. Journal of Wetland Ecology 2: 42–46.

    Article  CAS  Google Scholar 

  • Armitage, P., P. S. Cranston & L. C. V. Pinder, 1995. The Chironomidae—Biology and Ecology of Non-biting Midges. Chapman & Hall, London.

    Google Scholar 

  • Bartell, S. M., J. E. Breck, R. H. Gardner & A. L. Brenkert, 1986. Individual parameter perturbation and error analysis of fish bioenergetics models. Canadian Journal of Fisheries and Aquatic Sciences 43: 160–168.

    Article  Google Scholar 

  • Basset, A., F. Sangiorgio & L. Sabetta, 2006. Handbook for the application of body size descriptors to monitoring safety of transitional ecosystems. TW ReferenceNet – EU INTERREG III B Project 3B073. Management and sustainable development of protected transitional waters. University of Lecce, Lecce.

  • Batzer, D. & D. Boix, 2016. Invertebrates in Freshwater Wetlands—An International Perspective on their Ecology. Springer, Cham.

    Book  Google Scholar 

  • Batzer, D. P., R. Cooper & S. A. Wissinger, 2006. Wetland animal ecology. In Batzer, D. P. & R. R. Sharitz (eds), Ecology of Freshwater and Estuarine Wetlands. University of California Press, Berkeley: 242–284.

    Google Scholar 

  • Beauchamp, D. A., D. J. Stewart & G. L. Thomas, 1989. Corroboration of a bioenergetics model for sockeye salmon. Transactions of the American Fisheries Society 118: 597–607.

    Article  Google Scholar 

  • Bedford, A. P., 2005. Decomposition of Phragmites australis litter in seasonally flooded and exposed areas of a managed reedbed. Wetlands 25: 713–720.

    Article  Google Scholar 

  • Bedford, A. P. & I. Powell, 2005. Long-term changes in the invertebrates associated with the litter of Phragmites australis in a managed reedbed. Hydrobiologia 549: 267–285.

    Article  Google Scholar 

  • Benjamin, J., P. J. Connolly, J. G. Romine & R. W. Perry, 2013. Potential effects of changes in temperature and food resources on life history trajectories of Juvenile Oncorhynchus mykiss. Transactions of the American Fisheries Society 142: 208–220.

    Article  Google Scholar 

  • Benoit-Bird, K. J., 2004. Prey caloric value and predator energy needs: foraging predictions for wild spinner dolphins. Marine Biology 145: 435–444.

    Article  Google Scholar 

  • Bertoli, M., G. Brichese, D. Michielin, M. Ruzič, F. Vignes, A. Basset & E. Pizzul, 2015. Seasonal dynamics of macrozoobenthic community in the wetland of the Natural Regional Reserve of the Isonzo River Mouth, Northeast Italy: a three-years analysis. Annales Series Historia Naturalis 25: 55–66.

    Google Scholar 

  • Bertoli, M., G. Brichese, D. Michielin, M. Ruzič, F. Vignes, A. Basset & E. Pizzul, 2016. Seasonal and multi-annual patterns of Phragmites australis decomposition in a wetland of the Adriatic area (Northeast Italy): a three-years analysis. Knowledge and Management of Aquatic Ecosystems. https://doi.org/10.1051/kmae/2016001.

    Article  Google Scholar 

  • Bowen, S. H., E. V. Lutts & M. O. Ahlgren, 1995. Dietary protein and energy as determinants of food quality: trophic strategies compared. Ecology 76: 899–907.

    Article  Google Scholar 

  • Brant, S. B. & K. J. Hartman, 1993. Innovative approaches with bioenergetics models: future applications to fish ecology and management. Transactions of the American Fisheries Society 122: 731–735.

    Article  Google Scholar 

  • Brey, T., H. Rumhor & S. Ankar, 1988. Energy content of macrobenthic invertebrates: general conversion factors from weight to energy. Journal of Experimental Marine Biology and Ecology 117: 271–278.

    Article  Google Scholar 

  • Brey, T., C. Müller-Wiegmann, Z. M. C. Zittier & W. Hagen, 2010. Body composition in aquatic organisms - a global data bank of relationships between mass, elemental composition and energy content. Journal of Sea Research 64: 334–340.

    Article  Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Bunn, S. E., P. M. Davies & T. D. Mosisch, 1999. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwater Biology 41: 333–345.

    Article  Google Scholar 

  • Chen, X., M. B. Thompson & C. R. Dickman, 2004. Energy density and its seasonal variation in desert beetles. Journal of Arid Environments 56: 559–567.

    Article  Google Scholar 

  • Ciancio, J. E. & M. A. Pascual, 2006. Energy density of freshwater Patagonian organisms. Ecología Austral 16: 91–94.

    Google Scholar 

  • Ciancio, J. E., M. A. Pascual & D. A. Beauchamp, 2007. Energy density of Patagonian aquatic organisms and empirical predictions based on water content. Transactions of the American Fisheries Society 136: 1415–1422.

    Article  Google Scholar 

  • Ciancio, J. E., D. A. Beauchamp & M. A. Pascual, 2010. Marine effect of introduced salmonids: prey consumption by exotic steelhead and anadromous brown trout in the Patagonian Continental Shelf. Limnology and Oceanography 55: 2181–2192.

    Article  Google Scholar 

  • Ciancio, J., N. Suárez & P. Yorio, 2013. Energy density empirical predictor models for three coastal crab species in the Southwestern Atlantic Ocean. Journal of Crustacean Biology 33: 667–671.

    Article  Google Scholar 

  • Clarke, A., P. A. Prince & R. Clarke, 1996. The energy content of dragonflies (Odonata) in relation to predation by falcons. Bird Study 43: 300–304.

    Article  Google Scholar 

  • Conover, W. J., 1999. Practical Nonparametric Statistics, 3rd ed. Wiley, Hoboken.

    Google Scholar 

  • Conover, W. J. & R. L. Iman, 1979. On multiple-comparisons procedures. Technical Report LA-7677-MS. Los Alamos Scientific Laboratory, Los Alamos.

  • Conover, W. J., M. E. Johnson & M. M. Johnson, 1981. A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23: 351–361.

    Article  Google Scholar 

  • Cooke, S. L. & W. Hill, 2010. Can filter-feeding Asian carp invade the Laurentian Great Lakes? A bioenergetic modelling exercise. Freshwater Biology 55: 2138–2152.

    Article  Google Scholar 

  • Craig, J. F., M. J. Kenley & J. F. Talling, 1978. Comparative estimations of the energy content of fish tissue from bomb calorimetry, wet oxidation and proximate analysis. Freshwater Biology 8: 585–590.

    Article  CAS  Google Scholar 

  • Cummins, K. W., 1974. Structure and function of stream ecosystems. Bioscience 24: 631–641.

    Article  Google Scholar 

  • Cummins, K. W. & J. C. Wuycheck, 1971. Caloric equivalents for investigations in ecological energetics. International Association of Theoretical and Applied Limnology 18. E. Schweizerbart, Stuttgart, Germany.

  • David, A. T., C. A. Simenstad, J. R. Cordell, J. D. Toft, C. E. Ellings, A. Gray & H. B. Berge, 2015. Wetland loss, Juvenile Salmon foraging performance, and density dependence in Pacific Northwest Estuaries. Estuaries and Coasts 39: 767–780.

    Article  Google Scholar 

  • Davies, K. T. A., A. Ryan & C. C. Taggart, 2012. Measured and inferred gross energy content in diapausing Calanus spp. in a Scotian shelf basin. Journal of Plankton Research 34: 614–625.

    Article  Google Scholar 

  • Dermott, R. M. & C. G. Paterson, 1974. Determining dry weight and percentage dry matter of chironomid larvae. Canadian Journal Zoology 52: 1243–1250.

    Article  Google Scholar 

  • Deslauriers, D., L. B. Heironimus & R. Chipps, 2016. Test of a foraging-bioenergetics model to evaluate growth dynamics of endangered pallid sturgeon (Scaphirhynchus albus). Ecological Modelling 336: 1–12.

    Article  Google Scholar 

  • Dixon, A. B. & A. P. Wood, 2003. Wetland cultivation and hydrological management in Eastern Africa: matching community and hydrological needs through sustainable wetland use. Natural Resources Forum 27: 117–129.

    Article  Google Scholar 

  • Dolinar, N., N. Sřaj & A. Gabersčǐk, 2011. Water regime changes and the function of an intermittent wetland. In Vymazal, J. (ed.), Water and Nutrient Management in Natural and Constructed Wetlands. Springer, Dordrecht: 251–262.

    Google Scholar 

  • Dolinar, N., M. Regvar, D. Abram & A. Gabersčǐk, 2016. Water-level fluctuations as a driver of Phragmites australis primary productivity, litter decomposition, and fungal root colonisation in an intermittent wetland. Hydrobiologia 774: 69–80.

    Article  CAS  Google Scholar 

  • Doyle, T. K., J. D. R. Houghton, R. McDevitt, J. Davenport & G. C. Hays, 2007. The energy density of jellyfish: estimates from bomb-calorimetry and proximate-composition. Journal of Experimental Marine Biology and Ecology 343: 239–252.

    Article  Google Scholar 

  • Eid, E. M., K. H. Shaltout & Y. M. Al-Sodany, 2014. Decomposition dynamics of Phragmites australis litter in Lake Burullus, Egypt. Plant Species Biology 29: 47–56.

    Article  Google Scholar 

  • Feller, R. J. & R. M. Warwick, 1988. Energetics. In Higgins, R. P. & H. Thiel (eds), Introduction to the Study of Meiofauna. Smithsonian Institution Press, London: 181–196.

    Google Scholar 

  • Gabersčǐk, A., O. Urban-Berčič, N. Kržič, G. Kosi & A. Brancelj, 2003. The intermittent Lake Cerknica: various face of the same ecosystem. Lakes and Reservoir: Research and Management 8: 159–168.

    Article  Google Scholar 

  • Gray, A., 2005. The Salmon River Estuary: restoring tidal inundation and tracking ecosystem response. PhD Dissertation. University of Washington, Seattle.

  • Gupta, P. K. & M. C. Pant, 1982. Seasonal variation in the energy content of benthic macroinvertebrates of Lake Nainital U. P., India. Hydrobiologia 99: 19–22.

    Article  Google Scholar 

  • Hanson, B. J., K. W. Cummins, J. R. Barnes & M. V. Carter, 1984. Leaf litter processing in aquatic systems: a two-variable model. Hydrobiologia 111: 21–29.

    Article  Google Scholar 

  • Harper, M. P. & B. L. Peckarsky, 2006. Emergence cues of a mayfly in a high-altitude stream ecosystem: potential response to climate change. Ecological Applications 16: 612–621.

    Article  PubMed  Google Scholar 

  • Harris, M. & J. R. G. Hislop, 1978. The food of young puffins Fratercula artica. Journal of Zoology 185: 213–236.

    Article  Google Scholar 

  • Hartman, K. J. & S. B. Brant, 1995. Estimating energy density of fish. Transactions of the American Fisheries Society 124: 347–355.

    Article  Google Scholar 

  • Hartman, K. J. & F. J. Margraf, 1993. Evidence of predatory control of yellow perch (Perca flavescens) recruitment in Lake Erie, U. S. A. Journal of Fish Biology 42: 109–119.

    Article  Google Scholar 

  • Harvey, C. J., P. C. Hanson, T. E. Essington, P. B. Brown & J. F. Kitchell, 2002. Using bioenergetics models to predict stable isotope ratios in fishes. Canadian Journal of Fisheries and Aquatic Sciences 59: 115–124.

    Article  Google Scholar 

  • Hill, D. K. & J. J. Magnuson, 1990. Potential effects of global climate warming on the growth and prey consumption of Great Lakes fish. Transactions of the American Fisheries Society 119: 265–275.

    Article  Google Scholar 

  • Hislop, J. R. G., M. P. Harris & J. G. M. Smith, 1991. Variation in the calorific value and total energy content of the lesser sandeel (Ammodytes marinus) and other fish preyed on by seabirds. Journal of Zoology 224: 501–517.

    Article  Google Scholar 

  • Howmiller, R. P., 1972. Effects of preservatives on weights of some common macrobenthic invertebrates. Transactions of the American Fisheries Society 4: 743–746.

    Article  Google Scholar 

  • Hudon, C., P. Gagnon & M. Jean, 2005. Hydrological factors controlling the spread of common reed (Phragmites australis) in the St. Lawrence River (Quebec, Canada). Ecoscience 12: 347–357.

    Article  Google Scholar 

  • James, D. A., I. J. Csargo, A. Von Eschen, M. D. Thul, J. M. Baker, C. A. Hayer, J. Howell, J. Krause, A. Letvin & S. R. Chipps, 2012. A generalized model for estimating the energy density of invertebrates. Freshwater Science 31: 69–77.

    Article  Google Scholar 

  • Kitchell, J. F., D. J. Stewart & D. Weininger, 1977. Applications of a bioenergetics model to perch (Perca flavescens) and walleye (Stizostedion vitreum). Journal of the Fisheries Research Board of Canada 34: 1922–1935.

    Article  Google Scholar 

  • Leuven, R. S. E. W., T. C. M. Brock & H. A. M. Van Druten, 1985. Effects of preservation on dry- and ash-free dry weight biomass of some common aquatic macro-invertebrates. Hydrobiologia 127: 151–159.

    Article  CAS  Google Scholar 

  • Lezcano, A. H., M. L. R. Quiroga, A. L. Liberoff & S. Van der Molen, 2015. Marine pollution effects on the southern surf crab Ovalipes trimaculatus (Crustacea: brachyura: Polybiidae) in Patagonia Argentina. Marine Pollution Bulletin 91: 524–529.

    Article  PubMed  CAS  Google Scholar 

  • Lindegaard, C., 1994. The role of zoobenthos in energy flow in two shallow lakes. Hydrobiologia 275(276): 313–322.

    Article  Google Scholar 

  • Linhart, H. & W. Zucchini, 1986. Model Selection. Wiley, New York.

    Google Scholar 

  • Lucas, A., 1992. Bioenergetics of Aquatic Animals. Taylor and Francis Ltd, London.

    Google Scholar 

  • Lundström, J. O., Y. Brodin, M. L. Schäfer, T. Z. Persson Vinnersten & Ö. Östman, 2010. High species richness of Chironomidae (Diptera) in temporary flooded wetlands associated with high species turn-over. Bulletin of Entomological Research 100: 433–444.

    Article  PubMed  Google Scholar 

  • Marziali, L., D. G. Armanini, M. Cazzola, S. Erba, E. Toppi, A. Buffagni & B. Rossaro, 2010. Responses of chironomid larvae (Insecta Diptera) to ecological quality in Mediterranean river mesohabitats (South Italy). River Research and Applications 26: 1036–1105.

    Google Scholar 

  • McNab, B. K., 2002. The Physiological Ecology of Vertebrates: A View from Energetics. Cornell University Press, London.

    Google Scholar 

  • Mereta, S. T., P. Boets, A. A. Bayih, A. Malu, Z. Ephrem, A. Sisay, H. Endale, M. Yitbarek, A. Jemal, L. De Meester & P. L. M. Goethals, 2012. Analysis of environmental factors determining the abundance and diversity of macroinvertebrate taxa in natural wetlands of Southwest Ethiopia. Ecological Informatics 7: 52–61.

    Article  Google Scholar 

  • Metcalfe Smith, J. L., 1994. Biological water quality assessment of rivers: use of macroinvertebrate communities. In Calow, P. & G. E. Petts (eds), The Rivers Handbook, Vol. 2. Blackwell Science, London: 144–170.

    Chapter  Google Scholar 

  • Moller Pillot, H. K. M., 2009. Chironomidae larvae II – Biology and Ecology of the Chironomini. KNNV Publishing, Zeist.

    Book  Google Scholar 

  • Morante, T., L. García-Arberas, A. Antón & A. Rallo, 2012. Macroinvertebrate biomass estimates in Cantabrian streams and relationship with brown trout (Salmo trutta) populations. Limnetica 31: 85–94.

    Google Scholar 

  • Moretto Bagatini, Y., E. Benedito & J. Higuti, 2010. Effect of the environmental factors on the caloric content of benthic and phytophilous invertebrates in neotropical reservoirs in the Paraná State, Brazil. International Review of Hydrobiology 95: 246–259.

    Article  Google Scholar 

  • Munn, M. D. & M. A. Brusven, 1991. Benthic macroinvertebrate communities in nonregulated and regulated waters of the Clearwater river, Idaho, U.S.A. River Research and Applications 6: 1–11.

    Google Scholar 

  • Oliver, D. R. & M. E. Roussel, 1983. The Genera of Larval Midges of Canada: Diptera, Chironomidae, Insects and Arachnids of Canada Handbook Series, Part 11. Canadian Government Publishing Centre, Ottawa.

    Google Scholar 

  • Palavesam, A., B. Somanath & G. Immanuel, 2009. Effect of Detritus Quality on Energy Allocation in Chironomids. European Journal of Biological Sciences 1: 1–9.

    Google Scholar 

  • Pedersen, J. & J. R. G. Hislop, 2001. Seasonal variations in the energy density of fishes in the North Sea. Journal of Fish Biology 59: 380–389.

    Article  Google Scholar 

  • Perco, F., P. Merluzzi & K. Kravos, 2006. The Mouth of the Isonzo and Cona Island. Edizioni della Laguna, Mariano del Friuli (GO).

    Google Scholar 

  • Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwater Biology 4: 343–368.

    Article  Google Scholar 

  • Pizzul, E., S. Guiotto & G. A. Moro, 2008. Osservazioni sulle comunità macrozoobentoniche dell’Isola della Cona (Friuli Venezia Giulia, Nordest Italia). Annales Series Historia Naturalis 18: 79–90.

    Google Scholar 

  • Pizzul, E., M. Bertoli, A. Basset, F. Vignes, M. Calligaris & E. Tibaldi, 2009. Energy densities of brown trout (Salmo trutta) and its main prey items in an alpine stream of the Slizza Basin (Northwest Italy). Journal of Freshwater Ecology 24: 403–410.

    Article  Google Scholar 

  • Rolon, A. S. & L. Maltchik, 2006. Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia 556: 221–231.

    Article  CAS  Google Scholar 

  • Ruziĉ, M., M. Bertoli, E. Pizzul, F. Vignes & A. Basset, 2013. Macrozoobenthic communities in the Regional Natural Reserve of Isonzo River Mouth (Northeast Italy): first results of a leaf bag technique study. Annales Series Historia Naturalis 23: 7–16.

    Google Scholar 

  • Ruzycki, J. R., D. A. Beauchamp & D. L. Yule, 2003. Effects of introduced lake trout on native cuthroat trout in Yellowstone Lake. Ecological Applications 13: 23–37.

    Article  Google Scholar 

  • Sangiorgio, F., A. Basset, M. Pinna, L. Sabetta, M. Abbiati, M. Ponti, M. Minocci, S. Orfanidis, A. Nicolaiou, S. Moncheva, A. Trayanova, L. Georgescu, S. Dragan, S. Beqiraj, D. Koutsoubas, A. Evagelopoulos & S. Reizopoulou, 2008. Environmental factors affecting Phragmites australis litter decomposition in Mediterranean and Black Sea transitional waters. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 16–26.

    Article  Google Scholar 

  • Schultz, E. T. & D. O. Conover, 1997. Latitudinal differences in somatic energy storage: adaptive responses to seasonality in an estuarine fish (Atherinidae: Menidia menidia). Oecologia 109: 516–529.

    Article  PubMed  CAS  Google Scholar 

  • Serra, S. R. Q., M. A. S. Graça, S. Dolédec & M. J. Feio, 2017. Chironomidae of the Holarctic region: a comparison of ecological and functional traits between North America and Europe. Hydrobiologia 794: 273–285.

    Article  Google Scholar 

  • Shapiro, S. S. & M. B. Wilk, 1965. An analysis of variance test for normality (complete samples). Biometrika 52: 591–611.

    Article  Google Scholar 

  • Stanczykowska, A. & W. Lawacz, 1976. Caloric value of the Dreissena polymorpha (PALL.) dry body weight in some Mazurian Lakes. Polish Archives of Hydrobiology 23: 271–275.

    Google Scholar 

  • Stoch, F., 1995. Indagine ecologico faunistica sui popolamenti ad entomostraci di alcuni stagni di acqua salmastra dell’Isola della Cona (foce del Fiume Isonzo, Italia nordorientale). Gortania 16: 151–173.

    Google Scholar 

  • Street, M., 1982. The use of waste straw to promote the production of invertebrate foods for waterfowl in manmade wetlands. In: Scott, D. A. (ed), Managing wetlands and their birds, Proceedings of the Third Technical Meeting on Western Palearctic Migratory Bird Management. International Waterfowl Research Bureau, Slimbridge: 98–103.

  • Trudel, M. & J. B. Rasmussen, 2001. Predicting mercury concentration in fish using a mass balance model. Ecological Applications 11: 517–529.

    Article  Google Scholar 

  • Tsangaris, C., E. Cotou, E. Papathanassiou & A. Nicolaidou, 2010. Assessment of contaminant impacts in a semienclosed estuary (Amvrakikos Gulf, NW Greece): bioenergetics and biochemical biomarkers in mussels. Environmental Monitoring Assessment 161: 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Utz, R. M. & K. J. Hartman, 2007. Identification of critical prey items to Appalachian brook trout (Salvelinus fontinalis) with emphasis on terrestrial organisms. Hydrobiologia 575: 259–270.

    Article  Google Scholar 

  • Völlm, C. & F. Tannenberger, 2014. Shallow inundation favours decomposition of Phragmites australis leaves in a near-natural temperate fen. Mires and Peat 14: 1–9.

    Google Scholar 

  • Wanless, S., M. P. Harris, P. Redman & J. R. Speakman, 2005. Low energy values of fish as a probable cause of a major seabird breeding failure in the North Sea. Marine Ecology Progress Series 294: 1–8.

    Article  Google Scholar 

  • Ward, J. V., 1992. Aquatic Insect Ecology: Biology and Habitat. Wiley, New York.

    Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology, Evolution, and Systematics 17: 567–594.

    Article  Google Scholar 

  • Wiggins, G. B. R., J. Mackay & I. M. Smith, 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Archiv für Hydrobiologie 58: 97–206.

    Google Scholar 

  • Wissing, T. E. & A. D. Hasler, 1971. Intraseasonal change in caloric content of some freshwater invertebrates. Ecology 52: 371–373.

    Article  Google Scholar 

  • Woodward, G., J. B. Dybkjær, J. S. Òlafsson, G. M. Gíslason, E. R. Hannesdóttir & N. Friberg, 2010. Sentinel systems on the razor’s edge: effects of warming on Arctic geothermal stream ecosystems. Global Change Biology 16: 1979–1991.

    Article  Google Scholar 

  • Yunjun, Y. & L. Yanling, 2002. Energy densities of macroinvertebrates in China. Journal of Lake Sciences 14: 190–194.

    Google Scholar 

  • Zwarts, L. & J. H. Wanink, 1993. How the food supply harvestable by waders in the Wadden Sea depends on the variation of energy density, body weight, biomass, burying depth, and behaviour of tidal-flat invertebrates. Netherlands Journal of Sea Research 31: 441–476.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Fabio Perco and the entire staff of the Natural Regional Reserve of the Isonzo River Mouth for the help. Thanks to Mr. Valter Mian (Municipality of Staranzano) for the data regarding rainfall.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Pizzul.

Additional information

Handling editor: Dani Boix

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertoli, M., Brichese, G., Pastorino, P. et al. Seasonal multi-annual trends in energy densities of the midges (genus Chironomus) in a Mediterranean temporary wetland (Natural Regional Reserve of the Isonzo River Mouth, Northeast Italy). Hydrobiologia 823, 153–167 (2018). https://doi.org/10.1007/s10750-018-3703-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3703-z

Keywords

Navigation