Skip to main content
Log in

Macrobenthic invertebrate energy densities and ecological status in freshwater watercourses (Friuli Venezia-Giulia, Northeast Italy)

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The present study provides energy density (ED) data and models for four macrobenthic invertebrate genera inhabiting freshwater lotic environments (Baetis, Hydropsyche, Rhyacophila, and Onychogomphus). Samples were collected in the hydrological freshwater network of the Region Friuli Venezia Giulia within different watercourse types (creeks, streams, rivers channels, and ditches), and energy density was directly measured using an adiabatic bomb calorimeter. Measured ED expressed in Joule g−1 wet weight was strongly and positively correlated with percentage of dry weight (DW%) for all genera investigated (r2 > 0.9504), allowing to obtain genus-specific predictive models based on the relationship between ED and DW%. Models were validated and showed good predictive power, as 90th percentile of observed percentage errors ranged between 4.23% and 5.18% while medians ranged between 1.32% and 2.83%. ANCOVA disclosed significant differences between the models, as those for Rhyacophila and Onychogomphus differed significantly from the others. The empirical models were used to build a dataset of estimated energy density, to assess the relationship between energy density and ecological status of the monitored riverine systems, assessed in compliance with European and Italian law by the application of four different ecological indices (ICMi, RQE_IBMR, STAR_ICMi, and LIMeco). Information regarding ED levels for freshwater macrobenthic invertebrates is still neglected in biomonitoring programs, but it could be useful to interpret some ecological situations in the context of ecological status assessment, especially in relation to the trophic condition of the investigated riverine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AFNOR (2003) Qualité de l’eau: Détermination de l’indice biologique macrophytique en riviére (IBMR). Association Française de Normalisation(AFNOR), Norme NF T: 90–395

  • AQEM expert consortium (2002) Ecological classifications by AQEM expert consortium, www.aqem.de

  • Belfiore C (1983) Efemerotteri (Ephemeroptera). Consiglio Nazionale delle Ricerche Guide per il riconoscimento delle specie animali delle acque interne italiane, AQ/1/201:1–110

  • Benoit-Bird KJ (2004) Prey caloric value and predator energy needs: foraging predictions for wild spinner dolphins. Mar Biol 145:435–444

    Article  Google Scholar 

  • Boeuf B, Fritsch O (2016) Studying the implementation of the water framework directive in Europe: a meta-analysis of 89 journal articles. Ecol Soc 21:19. https://doi.org/10.5751/ES-08411-210219

  • Bertoli M, Azzoni M, Pizzul E (2014) A comparison between biomonitoring methods for the analysis of macrobenthic invertebrate communities in different river types of Friuli Venezia Giulia. Ann Ser Hist Nat 24:139–146

    Google Scholar 

  • Bertoli M, Brichese G, Pastorino P, Prearo M, Vignes F, Basset A, Pizzul E (2018) Seasonal multi-annual trends in energy densities of the midges (genus Chironomus) in a Mediterranean temporary wetland (Natural Regional Reserve of the Isonzo River Mouth, Northeast Italy). Hydrobiologia 823:153–167

    Article  Google Scholar 

  • Bertoli M, Franz F, Pastorino P, Prearo M, Pizzul E (2020) Seasonal patterns of Phragmites australis breakdown in a karstic freshwater system (Doberdò Lake, Northeast Italy) in relation to water level fluctuations, environmental features, and macrobenthic invertebrate communities. Hydrobiologia 847:2123–2140

    Article  CAS  Google Scholar 

  • Bonada N, Prat N, Resh V, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–524

    Article  CAS  PubMed  Google Scholar 

  • Brey T, Rumhor H, Ankar S (1988) Energy content of macrobenthic invertebrates: general conversion factors from weight to energy. J Exp Mar Biol Ecol 117:271–278

    Article  Google Scholar 

  • Brey T, Müller-Wiegmann C, Zittier ZMC, Hagen W (2019) Body composition in aquatic organisms — A global data bank of relationships between mass, elemental composition and energy content. J Sea Res 64:334–340. https://doi.org/10.1016/j.seares.2010.05.002

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Buffagni, A, S. Erba. (2014). Linee guida per la valutazione della componente macrobentonica fluviale ai sensi del DM 260/2010. ISPRA, Manuali e Linee Guida 116/2014, Rome

  • Buffagni A, Erba S, Genoni P, Lucchini D, Orlandi C (2014) Protocollo di campionamento e analisi dei macroinvertebrati dei corsi d’acqua guadabili. In: ISPRA (editor), Metodi biologici per le acque superficiali interne. Manuali e Linee Guida 111/2014. ISPRA, Rome, pp 26–76

  • Cain DJ, Carter JL, Frend SV, Luoma SN (2000) Metal exposure in a benthic macroinvertebrate Hydropsyche californica, related to mine drainage in the Sacramento River. Can J Fish Aquat Sci 57:380–390. https://doi.org/10.1139/f99-260

    Article  CAS  Google Scholar 

  • Camargo JA (1993) Macrobenthic surveys as a valuable tool for assessing freshwater quality in the Iberian Peninsula. Environ Monit Assess 24:71–90

    Article  CAS  PubMed  Google Scholar 

  • Camargo JA (1994) The importance of biological monitoring for the ecological risk assessment of freshwater pollution: a case study. Environ Int 20:229–238

    Article  Google Scholar 

  • Camargo JA (2017) Multimetric assessment of macroinvertebrate responses to mitigation measures in a dammed and polluted river of central Spain. Ecol Indic 83:356–367

    Article  CAS  Google Scholar 

  • Campaioli S, Ghetti PF, Minelli A, Ruffo S (1994) Manuale per il riconoscimento dei macroinvertebrati delle acque dolci italiane (vol. Provincia Autonoma di Trento, Trento, I)

    Google Scholar 

  • Campaioli S, Ghetti PF, Minelli A, Ruffo S (1999) Manuale per il riconoscimento dei macroinvertebrati delle acque dolci italiane (vol. Provincia Autonoma di Trento, Trento, II)

    Google Scholar 

  • Carlisle DM, Meador MR, Moulton SR II, Ruhl PM (2007) Estimation and application of indicator values for common macroinvertebrate genera and families of the United States. Ecol Indic 7:22–33

    Article  Google Scholar 

  • Carter JL, Resh VH, Rosenberg DM, Reynoldson TB (2006) Biomonitoring in North American rivers: a comparison of methods used for benthic macroinvertebrates in Canada and the United States. In: Ziglio G, Siligardi M, Flaim G (eds) Biological Monitoring of Rivers: Applications and Perspectives. John Wiley & Sons, NY, pp 203–228

    Chapter  Google Scholar 

  • Carter JL, Resh VH, Hannaford MJ (2017) Macroinvertebrates as biotic indicators of environmental quality. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology, vol 1. Ecosystem Structure. Academic Press Elsevier, London, pp 293–318

    Chapter  Google Scholar 

  • CEMAGREF (1982) Étude des méthodes biologiques d’appreciation quantitative de la qualité des eaux. Rapport Q. E. Lyon- A. F. Bassin Rhône- Mediterranée Corse, CEMAGREF, Lyon

    Google Scholar 

  • Chen X, Tompson MB, Dickman CR (2004) Energy density and its seasonal variation in desert beetles. J Arid Environ 56:559–567

    Article  Google Scholar 

  • Ciancio JE, Pascual MA (2006) Energy density of freshwater Patagonian organisms. Ecología Austral 16:91–94

    Google Scholar 

  • Ciancio JE, Pascual MA, Beauchamp DA (2007) Energy density of Patagonian aquatic organisms and empirical predictions based on water content. T Am Fish Soc 136:1415–1422

    Article  Google Scholar 

  • Ciancio JE, Beauchamp DA, Pascual MA (2010) Marine effect of introduced salmonids: prey consumption by exotic steelhead and anadromous brown trout in the Patagonian Continental Shelf. Limnol Oceanogr 55:2181–2192

    Article  Google Scholar 

  • Ciancio J, Suárez N, Yorio P (2013) Energy density empirical predictor models for three coastal crab species in the Southwestern Atlantic Ocean. J Crustacean Biol 33:667–671

    Article  Google Scholar 

  • Clapcott J, Pingram M, Collier KJ (2012) Review of functional and macroinvertebrate sampling methods for non-wadable rivers. Report No. 2222. Cawthron Institute, Nelson

  • Clarke A, Prince PA, Clarke R (1996) The energy content of dragonflies (Odonata) in relation to predation by falcons. Bird Study 43:300–304

    Article  Google Scholar 

  • Collier KJ, Probert PK, Jeffries M (2016) Conservation of aquatic invertebrates: concerns, challenges and conundrums. Aquatic Conserv Mar Freshw Ecosyst 26:817–837

    Article  Google Scholar 

  • Coppa G, Graf W, Tachet H (2012) A revised description of the larvae of three species of the Rhyacophila tristis group: Rhyacophila aquitanica, Rhyacophila pubescens and Rhyacophila tristis (Trichoptera: Rhyacophilidae). Ann Limnol-Int J Lim 48:215–223

    Article  Google Scholar 

  • Cummins KW (1974) Structure and function of stream ecosystems. Bioscience 24:631–641

    Article  Google Scholar 

  • Davies KTA, Ryan A, Taggart C (2012) Measured and inferred gross energy content in diapausing Calanus spp. In a Scotian shelf basin. J Plankton Res 34:614–625

    Article  Google Scholar 

  • Davis ND, Meyers KW, Ishida Y (1998) Caloric value of high-seas salmon prey organisms and simulated salmon ocean growth and prey consumption. NPAFC Bull 1:146–162

    Google Scholar 

  • Decree Law 152/06 (2006) Norme in materia ambientale. Decreto Legislativo N.152. Gazzetta Ufficiale N. 88(96). http://www.parlamento.it/leggi/deleghe/06152dl.htm. Accessed 7 Jan 2020

  • Dourado ECS, Benedito-Cecilio E, Latini JD (2005) O grau de trofia do ambiente influencia a quantidade de energia dos peixes? In: Rodrigues L, Thomaz SM, Agostinho AA, Gomes LC (eds), Biocenoses em reservatórios: padrões espaciais e temporais. Rima, São Carlos Biocenoses em reservatórios: padrões espaciais e temporais. Rima, São Carlos, pp 211–222

  • Doyle TK, Houghton JDR, McDevitt R, Davenport J, Hays GC (2007) The energy density of jellyfish: estimates from bomb-calorimetry and proximate- composition. J Exp Mar Biol Ecol 343:239–252

    Article  Google Scholar 

  • European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L006 (accessed 7 January 2020)

  • Feller RJ, Warwick RM (1988) Energetics. In: Higgins RP, Thiel H (eds) Introduction to the study of Meiofauna. Smithsonian Institution Press, London, pp 181–196

    Google Scholar 

  • Ferreras-Romero M, Márquez-Rodríguez J, Ruiz-García A (2009) Implications of anthropogenic disturbance factors on the Odonata assemblage in a Mediterranean fluvial system. Intl J Odonatol 12:413–428

    Article  Google Scholar 

  • Fontaneto D, Tommaseo-Ponzetta M, Galli C, Risé P, Glew RH, Paoletti MG (2011) Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition. Ecol Food Nutr 50:351–367. https://doi.org/10.1080/03670244.2011.586316

    Article  PubMed  Google Scholar 

  • Geraci CJ, Zhou X, Morse JC, Kjer KM (2010) Defining the genus Hydropsyche (Trichoptera:Hydropsychidae) based on DNA and morphological evidence. J N Am Benthol Soc 29:918–933

    Article  Google Scholar 

  • González A, Barnes CL, Shawn MW, Long JM (2020) Differences in macronutrient content of common aquatic macroinvertebrates available as prey for young-of-the-year Scaphirhynchus sturgeons in the lower Missouri River. J Freshw Ecol 35:191–202

    Article  CAS  Google Scholar 

  • Hartman KJ, Brant SB (1995) Estimating energy density of fish. T Am Fish Soc 124:347–355

    Article  Google Scholar 

  • Harvey CJ, Hanson PC, Essington TE, Brown PB, Kitchell JF (2002) Using bioenergetics models to predict stable isotope ratios in fishes. Can J Fish Aquat Sci 59:115–124

    Article  Google Scholar 

  • Haury J, Peltre M, Trémolières M, Barbe J, Thiébaut G, Bernez I, Daniel H, Chatenet P, Haan-Archipof G, Muller S, Dutartre A, Laplace-Treyture C, Cazaubon A, Lambert-Servien E (2006) A new method to assess water trophy and organic pollution – the Macrophyte Biological Index for Rivers (IBMR): its application to different types of river and pollution. Hydrobiologia 570:153–158

    Article  CAS  Google Scholar 

  • Hellawell JM (1986) Biological indicators of freshwater pollution and environmental management. Elsevier, New York, NY

    Book  Google Scholar 

  • Higuti J, Bagatini YM, Takahashi MA, Zviejkovski IP, Dias VG, Benedito-Cecilio E (2003) Efeito do estado trófico de reservatórios paranaenses sobre o conteúdo calórico de insetos aquáticos. In: Rodrigues L, Thomaz SM, Agostinho AA, Gomes LC (eds) Biocenoses em reservatórios: padrões espaciais e temporais. Rima, São Carlos, Anais do Workshop Produtividade em Reservatórios e Bioindicadores. Eduem, Maringá, pp 153–159

  • Hill DK, Magnuson JJ (1990) Potential effects of global climate warming on the growth and prey consumption of Great Lakes fish. T Am Fish Soc 119:265–275

    Article  Google Scholar 

  • Hrovat M, Urbanič G (2012) Life cycle of Rhyacophila fasciata Hagen, 1859 and Hydropsyche saxonica McLachlan, 1884 in a Dinaric karst river system. Aquat Insects: Int J Freshw Entomol 34:113–125. https://doi.org/10.1080/01650424.2012.643038

    Article  Google Scholar 

  • James DA, Csargo IJ, Von Eschen A, Thul MD, Baker JM, Hayer CA, Howell J, Krause J, Letvin A, Chipps SR (2012) A generalized model for estimating the energy density of invertebrates. Freshw Sci 31:69–77

    Article  Google Scholar 

  • Kazanci N (2011) Species records of order Odonata (Insecta) and their habitat quality from Turkey. Rev Hydrobiol 4:47–58

    Google Scholar 

  • Koop JHE, Schäffer M, Ortmann C, Winkelmann C (2008) Towards environmental assessment of river ecosystems by analyzing energy reserves of aquatic invertebrates. Limnologica 38:378–387. https://doi.org/10.1016/j.limno.2008.05.004

    Article  Google Scholar 

  • Lenat DR, Resh VH (2001) Taxonomy and stream ecology: the benefits of genus- and species-level identifications. J N Am Benthol Soc 20:287–298

    Article  Google Scholar 

  • Leuven RSEW, Brock TCM, Van Druten HAM (1985) Effects of preservation on dry- and ash-free dry weight biomass of some common aquatic macro-invertebrates. Hydrobiologia 127:151–159

    Article  CAS  Google Scholar 

  • Lezcano AH, Quiroga MLR, Liberoff AL, Van der Molen S (2015) Marine pollution effects on the southern surf crab Ovalipes trimaculatus (Crustacea: brachyura: Polybiidae) in Patagonia Argentina. Mar Pollut Bull 91:524–529

    Article  CAS  PubMed  Google Scholar 

  • Lucas A (1992) Bioenergetics of Aquatic animals. Taylor and Francis Ltd, London

    Google Scholar 

  • Mancini L, Sollazzo C (2009) Metodo per la valutazione dello stato ecologico delle acque correnti: comunità diatomiche. Istituto Superiore di Sanità, Rome

    Google Scholar 

  • McCarthy SG, Duda JJ, Emlen JM, Hodgson GR, Beauchamp DA (2009) Linking habitat quality with trophic performance of steelhead along forest gradients in the South Fork Trinity River watershed, California. T Am Fish Soc 138:506–521

    Article  Google Scholar 

  • McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Cornell University Press, London

    Google Scholar 

  • MDEQ (2003) Development and application of the Mississippi benthic index of stream quality. MDEQ, Mississippi

    Google Scholar 

  • Merritt RW, Cummins KW, Berg MB (2008) An Introduction to the aquatic insects of North America, 4th edn. Kendall/Hunt Publishing Company, Iowa

    Google Scholar 

  • Metcalfe Smith JL (1994) Biological water quality assessment of rivers: use of macroinvertebrate communities. In: Calow P, Petts GE (eds) The rivers handbook, vol 2. Blackwell Science, London, pp 144–170

    Chapter  Google Scholar 

  • Minciardi MR, Spada CD, Rossi GL, Angius R, Orrù G, Mancini L, Pace G, Marcheggiani S, Puccinelli C (2009) Metodo per la valutazione e la classificazione dei corsi d’acqua utilizzando la comunità delle Macrofite acquatiche. ENEA, Rome

    Google Scholar 

  • Ministerial Decree 260/2010 (2010) Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali, per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n. 152, recante norme in mate- ria ambientale, predisposto ai sensi dell’articolo 75, comma 3, del medesimo decreto legislativo. http://www.gazzettaufficiale.it/eli/id/2011/02/07/011G0035/sg. Accessed 7 Jan 2020

  • Morante T, García-Arberas L, Antón A, Rallo A (2012) Macroinvertebrate biomass estimates in Cantabrian streams and relationship with brown trout (Salmo trutta) populations. Limnetica 31:85–94

    Google Scholar 

  • Moretto Bagatini Y, Benedito E, Higuti J (2010) Effect of the environmental factors on the caloric content of benthic and phytophilous invertebrates in neotropical reservoirs in the Parana´ State, Brazil. Int Rev Hydrobiol 95:246–259

    Article  Google Scholar 

  • Mosetti F (1983) Sintesi sull’idrologia del Friuli Venezia Giulia. Quaderni, E.T.P. Rivista di Limnologia 6:1–295

    Google Scholar 

  • Munn MD, Brusven MA (1991) Benthic invertebrate communities in nonregulated and regulated waters of the Clearwater River, Idaho, USA. Regul Rivers Res Manag 6:1–11

    Article  Google Scholar 

  • Odum EP (1971) Fundamental of ecology. W.B. Saunders Co., Philadelphia

    Google Scholar 

  • Pagioro TA, Velho LFM, Lansac-Tôha FA, Pereira DG, Nakamura AKS, Perenha MCZ, Santos VD (2005) Influência do grau de trofia sobre os padrões de abundância de bactérias e protozoários planctônicos em reservatórios do Estado do Paraná. In: Rodrigues L, Thomaz SM, Agostinho AA, Gomes LC (eds) Biocenoses em reservatórios: padrões espaciais e temporais. Rima, São Carlos, pp 38–54

    Google Scholar 

  • Pastorino P, Bertoli M, Squadrone S, Brizio P, Piazza G, Oss Noser AG, Prearo M, Abete MC, Pizzul E (2019) Detection of trace elements in freshwater macrobenthic invertebrates of different functional feeding guilds: a case study in Northeast Italy. Ecohydrol Hydrobiol 19:428–440

    Article  Google Scholar 

  • Pastorino P, Brizio P, Abete MC, Bertoli M, Oss Noser AG, Piazza G, Prearo M, Elia AC, Pizzul E, Squadrone S (2020) Macrobenthic invertebrates as tracers of rare earth elements in freshwater watercourses. Sci Tot Environ 698:134282

    Article  CAS  Google Scholar 

  • Pedersen J, Hislop JRG (2001) Seasonal variations in the energy density of fishes in the North Sea. J Fish Biol 59:380–389

    Article  Google Scholar 

  • Petruželová J, Bojková J, Hubáčková L, Šorfová V, Syrovátka V, Horsák M (2019) Factors explaining community contrast of Trichoptera assemblages at insular Western Carpathian spring fens to the adjacent headwaters. Int Rev Hydrobiol 105:20–32. https://doi.org/10.1002/iroh.201901987

    Article  Google Scholar 

  • Pingram MA, Collier KJ, Hamilton DP, Hicks BJ, David BO (2014) Spatial and temporal patterns of carbon flow in a temperate, large river food web. Hydrobiologia 729:107–131

    Article  CAS  Google Scholar 

  • Pizzul E, Guiotto S, Moro GA (2008) Osservazioni sulle comunità macrozoobentoniche dell’Isola della Cona (Friuli Venezia Giulia, Nordest Italia). Ann Ser Hist Nat 18:79–90

    Google Scholar 

  • Pizzul E, Bertoli M, Basset A, Vignes F, Calligaris M, Tibaldi E (2009) Energy densities of brown trout (Salmo trutta) and its main prey items in an alpine stream of the Slizza Basin (Northwest Italy). J Freshw Ecol 24:403–410

    Article  Google Scholar 

  • QGIS.org (2018) QGIS geographic information system. Open source geospatial foundation project. http://qgis.org. Accessed 2 January 2020

  • Qu X, Wu NW, Tang T, Cai Q, Park Y (2010) Effects of heavy metals on benthic macroinvertebrate communities in high mountain streams. Ann Limnol-Int J Lim 46:291–302

    Article  Google Scholar 

  • Rodrigues LC, Train S, Pivato BM, Bovo VM, Borges PAF, Jati S (2005) Assembléias fitoplanctônicas de trinta reservatórios do Estado do Paraná. In: Rodrigues L, Thomaz SM, Agostinho AA, Gomes LC (eds) Biocenoses em reservatórios: padrões espaciais e temporais. Rima, São Carlos, pp 57–72

    Google Scholar 

  • Rott E, Pfister P, van Dam H, Pipp E, Pall K, Binder N, Ortler K (1999) Indikationslisten für Aufwuchsalgen in Österreichischen Fliessgewässern, Teil 2: Trophieindikation und autökologische Anmerkungen Bundesministerium für Land- und Forstwirtschaf. Wasserwirtschaftskataster, Wien

    Google Scholar 

  • RStudio Team (2016) RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com. Accessed 7 January 2020

  • Runck C (2007) Macroinvertebrate production and food web energetics in an industrially contaminated stream. Ecol Appl 17:740–753

    Article  PubMed  Google Scholar 

  • Ruzycki JR, Beauchamp DA, Yule DL (2003) Effects of introduced lake trout on native cuthroat trout in Yellowstone Lake. Ecol Appl 13:23–37

    Article  Google Scholar 

  • Schultz ET, Conover DO (1997) Latitudinal differences in somatic energy storage: adaptive responses to seasonality in an estuarine fish (Atherinidae: Menidia menidia). Oecologia 109:516–529

    Article  CAS  PubMed  Google Scholar 

  • Shantibala T, Lokeshwari RK, Debaraj H (2014) Nutritional and antinutritional composition of the five species of aquatic edible insects consumed in Manipur, India. J Insect Sci 14:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siligardi M, Bernabei S, Cappelletti C, Chierici E, Ciutti F, Egaddi F, Franceschini A, Maiolini B, Mancini L, Minciardi MR, Monauni C, Rossi GL, Sansoni G, Spaggiarri R, Zanetti M (2007) I.F.F. Indice di Funzionalità Fluviale. APAT, Ministero dell’Ambiente e della Tutela del Territorio e del Mare, APPA Trento, Lineagrafica Bertelli Editori snc, Trento

  • Solà C, Burgos M, Plazuelo A, Toja J, Plans M, Prat N (2004) Heavy metals bioaccumulation and macroinvertebrate community changes in a Mediterranean stream affected by acid mine drainage and an accidental spill (Guadiamar River, SW Spain). Sci Tot Environ 333:109–126

    Article  CAS  Google Scholar 

  • Stubbington R, Bogan MT, Bonada N, Boulton AJ, Datry T, Leigh C, Vander Vorste R (2017) The biota of intermittent rivers and ephemeral streams: aquatic invertebrates. In: Datry T, Bonada N, Boulton AJ (eds) Intermittent rivers and ephemeral streams, ecology and management. Academic Press, London, pp 217–243. https://doi.org/10.1016/B978-0-12-803835-2.00007-3

    Chapter  Google Scholar 

  • Suhling F (1995) Temporal patterns of emergence of the riverine dragonfly Onychogomphus uncatus (Odonata: Gomphidae). Hydrobiologia 302:113–118.https://doi.org/10.1007/BF00027036

    Article  Google Scholar 

  • Torrisi MC, Scuri S, Dell’Uomo A, Cocchioni M (2010) Comparative monitoring by means of diatoms, macroinvertebrates and chemical parameters of an Apennine watercourse of central Italy: the river Tenna. Ecol Indic 10:910–913

    Article  CAS  Google Scholar 

  • Trudel M, Rasmussen JB (2001) Predicting mercury concentration in fish using a mass balance model. Ecol Appl 11:517–529

    Article  Google Scholar 

  • Wanless S, Harris MP, Redman P, Speakman JR (2005) Low energy values of fish as a probable cause of a major seabird breeding failure in the North Sea. Mar Ecol Prog Ser 294:1–8

    Article  Google Scholar 

  • Yan Y, Liang Y (2002) Energy densities of macroinvertebrates in China. J Lake Sci 14:190–194

    Google Scholar 

  • Yanygina LV, Evseeva AA (2019) Caddisfly assemblages in metal contaminated rivers of the Tikhaya basin, east Kazakhstan. B Environ Contam Tox 102:316–322

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Pizzul.

Additional information

Handling Editor: Télesphore Sime-Ngando.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertoli, M., Piazza, G., Pastorino, P. et al. Macrobenthic invertebrate energy densities and ecological status in freshwater watercourses (Friuli Venezia-Giulia, Northeast Italy). Aquat Ecol 55, 501–518 (2021). https://doi.org/10.1007/s10452-021-09840-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-021-09840-x

Keywords

Navigation