Skip to main content

Advertisement

Log in

Right ventricular failure: a comorbidity or a clinical emergency?

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

There has been ample data providing a convincing perception about the underlying mechanism pertaining to left ventricle (LV) hypertrophy progressing towards LV failure. In comparison, data available on the feedback of right ventricle (RV) due to volume or pressure overload is minimal. Advanced imaging techniques have aided the study of physiology, anatomy, and diseased state of RV. However, the treatment scenario of right ventricular failure (RVF) demands more attention. It is a critical clinical risk in patients with carcinoid syndrome, pulmonary hypertension, atrial septal defect, and several other concomitant diseases. Although the remodeling responses of both ventricles on an increase of end-diastolic pressure are mostly identical, the stressed RV becomes more prone to oxidative stress activating the apoptotic mechanism with diminished angiogenesis. This instigates the advancement of RV towards failure in contrast to LV. Empirical heart failure (HF) therapies have been ineffective in improving the mortality rate and cardiac function in patients, which prompted a difference between the underlying pathophysiology of RVF and LV failure. Treatment strategies should be devised, taking into consideration the anatomical and physiological characteristics of RV. This review would emphasize on the pathophysiology of the RVF and the differences between two ventricles in molecular response to stress. A proper insight into the underlying pathophysiology is required to develop optimized therapeutic management in RV-specific HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Raina A, Meeran T (2018) Right ventricular dysfunction and its contribution to morbidity and mortality in left ventricular heart failure. Curr Heart Fail Rep 15:94–105

    Article  Google Scholar 

  2. Kormos RL, Teuteberg JJ, Pagani FD et al (2010) Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 139:1316–1324

    Article  Google Scholar 

  3. LaRue SJ, Raymer DS, Pierce BR et al (2017) Clinical outcomes associated with INTERMACS-defined right heart failure after left ventricular assist device implantation. J Hear Lung Transplant 36:475–477

    Article  Google Scholar 

  4. Galiè N, Humbert M, Vachiery J-L et al (2016) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endor. Eur Heart J 37:67–119

    Article  Google Scholar 

  5. Greyson CR (2008) Pathophysiology of right ventricular failure. Crit Care Med 36:S57–S65

    Article  Google Scholar 

  6. Zapol WM, Snider MT (1977) Pulmonary hypertension in severe acute respiratory failure. N Engl J Med 296:476–480

    Article  CAS  Google Scholar 

  7. Lambermont B, Ghuysen A, Kolh P et al (2003) Effects of endotoxic shock on right ventricular systolic function and mechanical efficiency. Cardiovasc Res 59:412–418

    Article  CAS  Google Scholar 

  8. Arrigo M, Huber LC, Winnik S et al (2019) Right ventricular failure: pathophysiology, diagnosis and treatment. Card Fail Rev 5:140

    Article  Google Scholar 

  9. Stobierska-Dzierzek B, Awad H, Michler RE (2001) The evolving management of acute right-sided heart failure in cardiac transplant recipients. J Am Coll Cardiol 38:923–931

    Article  CAS  Google Scholar 

  10. Kaul TK, Fields BL (2000) Postoperative acute refractory right ventricular failure: incidence, pathogenesis, management and prognosis. Cardiovasc Surg 8:1–9

    Article  CAS  Google Scholar 

  11. La Vecchia L, Zanolla L, Varotto L et al (2001) Reduced right ventricular ejection fraction as a marker for idiopathic dilated cardiomyopathy compared with ischemic left ventricular dysfunction. Am Heart J 142:181–189

    Article  Google Scholar 

  12. Goldstein JA (2002) Pathophysiology and management of right heart ischemia. J Am Coll Cardiol 40:841–853

    Article  Google Scholar 

  13. Nieminen MS, Brutsaert D, Dickstein K et al (2006) EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population. Eur Heart J 27:2725–2736

    Article  Google Scholar 

  14. Bristow MR, Kao DP, Breathett KK et al (2017) Structural and functional phenotyping of the failing heart: is the left ventricular ejection fraction obsolete? JACC Hear Fail 5:772–781. https://doi.org/10.1016/j.jchf.2017.09.009

    Article  Google Scholar 

  15. Simonneau G, Galiè N, Rubin LJ et al (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43:S5–S12. https://doi.org/10.1016/j.jacc.2004.02.037

    Article  Google Scholar 

  16. Melenovsky V, Hwang SJ, Lin G et al (2014) Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J 35:3452–3462. https://doi.org/10.1093/eurheartj/ehu193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McIntyre KM, Sasahara AA (1977) The ratio of pulmonary arterial pressure to pulmonary vascular obstruction: index of preembolic cardiopulmonary status. Chest 71:692–697

    Article  CAS  Google Scholar 

  18. Wrobel JP, Thompson BR, Williams TJ (2012) Mechanisms of pulmonary hypertension in chronic obstructive pulmonary disease: a pathophysiologic review. J Hear Lung Transplant 31:557–564

    Article  Google Scholar 

  19. Arrigo M, Huber LC (2013) Eponyms in cardiopulmonary reflexes. Am J Cardiol 112:449–453

    Article  Google Scholar 

  20. Weitzenblum E (2003) Chronic cor pulmonale. Heart 89:225–230

    Article  Google Scholar 

  21. Hilde JM, Skjørten I, Grøtta OJ et al (2013) Right ventricular dysfunction and remodeling in chronic obstructive pulmonary disease without pulmonary hypertension. J Am Coll Cardiol 62:1103–1111

    Article  Google Scholar 

  22. Haigney MC, Zareba W, Gentlesk PJ et al (2004) QT interval variability and spontaneous ventricular tachycardia or fibrillation in the Multicenter Automatic Defibrillator Implantation Trial (MADUT) II patients. J Am Coll Cardiol 44:1481–1487. https://doi.org/10.1016/j.jacc.2004.06.063

    Article  PubMed  Google Scholar 

  23. Spaan JAE, Piek JJ, Hoffman JIE, Siebes M (2006) Physiological basis of clinically used coronary hemodynamic indices. Circulation 113:446–455. https://doi.org/10.1161/CIRCULATIONAHA.105.587196

    Article  PubMed  Google Scholar 

  24. Kasner M, Westermann D, Steendijk P et al (2012) Left ventricular dysfunction induced by nonsevere idiopathic pulmonary arterial hypertension: a pressure-volume relationship study. Am J Respir Crit Care Med 186:181–189. https://doi.org/10.1164/rccm.201110-1860OC

    Article  PubMed  Google Scholar 

  25. Gorter TM, van Veldhuisen DJ, Bauersachs J et al (2018) Right heart dysfunction and failure in heart failure with preserved ejection fraction: mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 20:16–37. https://doi.org/10.1002/ejhf.1029

    Article  PubMed  Google Scholar 

  26. Srivaratharajah K, Coutinho T, Dekemp R et al (2016) Reduced myocardial flow in heart failure patients with preserved ejection fraction. Circ Hear Fail 9:1–9. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002562

    Article  Google Scholar 

  27. Thenappan T, Shah SJ, Gomberg-Maitland M et al (2011) Clinical characteristics of pulmonary hypertension in patients with heart failure and preserved ejection fraction. Circ Hear Fail 4:257–265. https://doi.org/10.1161/CIRCHEARTFAILURE.110.958801

    Article  Google Scholar 

  28. Rosenson RS, Brewer HB, Davidson WS et al (2012) Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125:1905–1919. https://doi.org/10.1161/CIRCULATIONAHA.111.066589

    Article  PubMed  PubMed Central  Google Scholar 

  29. Minai OA, Ricaurte B, Kaw R et al (2009) Frequency and impact of pulmonary hypertension in patients with obstructive sleep apnea syndrome. Am J Cardiol 104:1300–1306. https://doi.org/10.1016/J.AMJCARD.2009.06.048

    Article  PubMed  Google Scholar 

  30. Bosch L, Lam CSP, Gong L et al (2017) Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur J Heart Fail 19:1664–1671. https://doi.org/10.1002/ejhf.873

    Article  CAS  PubMed  Google Scholar 

  31. Chang PP, Longenecker JC, Wang NY et al (2005) Mild vs severe pulmonary hypertension before heart transplantation: different effects on posttransplantation pulmonary hypertension and mortality. J Hear Lung Transplant 24:998–1007. https://doi.org/10.1016/J.HEALUN.2004.07.013

    Article  Google Scholar 

  32. Gorter TM, van Melle JP, Rienstra M et al (2018) Right heart dysfunction in heart failure with preserved ejection fraction: the impact of atrial fibrillation. J Card Fail 24:177–185. https://doi.org/10.1016/J.CARDFAIL.2017.11.005

    Article  PubMed  Google Scholar 

  33. Zornoff LAM, Skali H, Pfeffer MA et al (2002) Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J Am Coll Cardiol 39:1450–1455. https://doi.org/10.1016/S0735-1097(02)01804-1

    Article  PubMed  Google Scholar 

  34. Ghio S, Guazzi M, Scardovi AB et al (2017) Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur J Heart Fail 19:873–879. https://doi.org/10.1002/ejhf.664

    Article  CAS  PubMed  Google Scholar 

  35. Pfisterer M, Emmenegger H, Müller-Brand J, Burkart F (1990) Prevalence and extent of right ventricular dysfunction after myocardial infarction — relation to location and extent of infarction and left ventricular function. Int J Cardiol 28:325–332. https://doi.org/10.1016/0167-5273(90)90315-V

    Article  CAS  PubMed  Google Scholar 

  36. Abraityte A, Lunde IG, Askevold ET et al (2017) Wnt5a is associated with right ventricular dysfunction and adverse outcome in dilated cardiomyopathy. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-03625-9

    Article  CAS  Google Scholar 

  37. Griepp RB, Stinson EB, Dong E et al (1971) Determinants of operative risk in human heart transplantation. Am J Surg 122:192–197. https://doi.org/10.1016/0002-9610(71)90316-3

    Article  CAS  PubMed  Google Scholar 

  38. Gude E, Simonsen S, Geiran OR et al (2010) Pulmonary hypertension in heart transplantation: discrepant prognostic impact of pre-operative compared with 1-year post-operative right heart hemodynamics. J Hear Lung Transplant 29:216–223. https://doi.org/10.1016/J.HEALUN.2009.08.021

    Article  Google Scholar 

  39. Bittner HB, Chen EP, Biswas SS et al (1999) Right ventricular dysfunction after cardiac transplantation: primarily related to status of donor heart. Ann Thorac Surg 68:1605–1611. https://doi.org/10.1016/S0003-4975(99)00987-X

    Article  CAS  PubMed  Google Scholar 

  40. Carrier M, Blaise G, Bélisle S et al (1999) Nitric oxide inhalation in the treatment of primary graft failure following heart transplantation. J Hear Lung Transplant 18:664–667. https://doi.org/10.1016/S1053-2498(99)00025-X

    Article  CAS  Google Scholar 

  41. Raina A, Vaidya A, Gertz ZM et al (2013) Marked changes in right ventricular contractile pattern after cardiothoracic surgery: implications for post-surgical assessment of right ventricular function. J Hear Lung Transplant 32:777–783. https://doi.org/10.1016/J.HEALUN.2013.05.004

    Article  Google Scholar 

  42. Fitzpatrick JR, Frederick JR, Hsu VM et al (2008) Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Hear Lung Transplant 27:1286–1292. https://doi.org/10.1016/J.HEALUN.2008.09.006

    Article  Google Scholar 

  43. Drakos SG, Janicki L, Horne BD et al (2010) Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol 105:1030–1035. https://doi.org/10.1016/J.AMJCARD.2009.11.026

    Article  PubMed  Google Scholar 

  44. Schlossarek S, Carrier L (2011) The ubiquitin-proteasome system in cardiomyopathies. Curr Opin Cardiol 26:190–195. https://doi.org/10.1097/HCO.0b013e32834598fe

    Article  PubMed  Google Scholar 

  45. Naeije R, Brimioulle S, Dewachter L (2014) Biomechanics of the right ventricle in health and disease (2013 Grover Conference Series). Pulm Circ 4:395–406. https://doi.org/10.1086/677354

    Article  PubMed  PubMed Central  Google Scholar 

  46. Puwanant S, Hamilton KK, Klodell CT et al (2008) Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Hear Lung Transplant 27:1102–1107. https://doi.org/10.1016/J.HEALUN.2008.07.022

    Article  Google Scholar 

  47. Vivo RP, Cordero-Reyes AM, Qamar U et al (2013) Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Hear Lung Transplant 32:792–799. https://doi.org/10.1016/J.HEALUN.2013.05.016

    Article  Google Scholar 

  48. Kato TS, Farr M, Schulze PC et al (2012) Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation. Am J Cardiol 109:246–251. https://doi.org/10.1016/J.AMJCARD.2011.08.040

    Article  PubMed  Google Scholar 

  49. Denault AY, Couture P, Beaulieu Y et al (2015) Right ventricular depression after cardiopulmonary bypass for valvular surgery. J Cardiothorac Vasc Anesth 29:836–844. https://doi.org/10.1053/J.JVCA.2015.01.011

    Article  PubMed  Google Scholar 

  50. Kassis H, Cherukuri K, Agarwal R et al (2017) Significance of residual mitral regurgitation after continuous flow left ventricular assist device implantation. JACC Hear Fail 5:81–88. https://doi.org/10.1016/j.jchf.2016.09.014

    Article  Google Scholar 

  51. Kiernan MS, French AL, Denofrio D et al (2015) Preoperative three-dimensional echocardiography to assess risk of right ventricular failure after left ventricular assist device surgery. J Card Fail 21:189–197. https://doi.org/10.1016/J.CARDFAIL.2014.12.009

    Article  PubMed  Google Scholar 

  52. Lampert BC, Teuteberg JJ (2015) Right ventricular failure after left ventricular assist devices. J Hear Lung Transplant 34:1123–1130. https://doi.org/10.1016/J.HEALUN.2015.06.015

    Article  Google Scholar 

  53. Kapelios CJ, Charitos C, Kaldara E et al (2015) Late-onset right ventricular dysfunction after mechanical support by a continuous-flow left ventricular assist device. J Hear Lung Transplant 34:1604–1610. https://doi.org/10.1016/J.HEALUN.2015.05.024

    Article  Google Scholar 

  54. Takeda K, Takayama H, Colombo PC et al (2015) Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support. J Hear Lung Transplant 34:1024–1032. https://doi.org/10.1016/J.HEALUN.2015.03.011

    Article  Google Scholar 

  55. Pawlush DG, Musch TI, Moore RL (1989) Ca2+-dependent heterometric and homeometric autoregulation in hypertrophied rat heart. Am J Physiol Circ Physiol 256:H1139–H1147

    Article  CAS  Google Scholar 

  56. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117:1436–1448. https://doi.org/10.1161/CIRCULATIONAHA.107.653576

    Article  PubMed  Google Scholar 

  57. Marino TA, Kent RL, Uboh CE et al (1985) Structural analysis of pressure versus volume overload hypertrophy of cat right ventricle. Am J Physiol Circ Physiol 249:H371–H379

    Article  CAS  Google Scholar 

  58. Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. J Appl Physiol 98:390–403

    Article  CAS  Google Scholar 

  59. Schmitt J-M, Vieillard-Baron A, Augarde R et al (2001) Positive end-expiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med 29:1154–1158

    Article  CAS  Google Scholar 

  60. Vlahakes GJ, Turley K, Hoffman JIE (1981) The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 63:87–95

    Article  CAS  Google Scholar 

  61. Davlouros PA, Niwa K, Webb G, Gatzoulis MA (2006) The right ventricle in congenital heart disease. Heart 92:i27–i38

    Article  Google Scholar 

  62. Reddy S, Bernstein D (2015) Molecular mechanisms of right ventricular failure. Circulation 132:1734–1742

    Article  CAS  Google Scholar 

  63. Haddad F, Doyle R, Murphy DJ, Hunt SA (2008) Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117:1717–1731

    Article  Google Scholar 

  64. Raina A, Seetha Rammohan HR, Gertz ZM et al (2013) Postoperative right ventricular failure after left ventricular assist device placement is predicted by preoperative echocardiographic structural, hemodynamic, and functional parameters. J Card Fail 19:16–24. https://doi.org/10.1016/J.CARDFAIL.2012.11.001

    Article  PubMed  Google Scholar 

  65. Hoetzenecker K, Ankersmit HJ, Bonderman D et al (2009) Atrial septal defect repair after a 10-month treatment with bosentan in a patient with severe pulmonary arterial hypertension: a case report. J Thorac Cardiovasc Surg 137:760–761. https://doi.org/10.1016/j.jtcvs.2008.03.064

    Article  PubMed  Google Scholar 

  66. Piao L, Fang Y-H, Parikh KS et al (2012) GRK2-mediated inhibition of adrenergic and dopaminergic signaling in right ventricular hypertrophy: therapeutic implications in pulmonary hypertension. Circulation 126:2859–2869

    Article  CAS  Google Scholar 

  67. Shaddy RE, Boucek MM, Hsu DT et al (2007) Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA 298:1171–1179

    Article  Google Scholar 

  68. Rouleau JL, Kapuku G, Pelletier S et al (2001) Cardioprotective effects of ramipril and losartan in right ventricular pressure overload in the rabbit: importance of kinins and influence on angiotensin II type 1 receptor signaling pathway. Circulation 104:939–944

    Article  CAS  Google Scholar 

  69. Nagaya N, Nishikimi T, Uematsu M et al (2000) Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation 102:865–870

    Article  CAS  Google Scholar 

  70. Ueno M, Miyauchi T, Sakai S et al (1999) Effects of physiological or pathological pressure load in vivo on myocardial expression of ET-1 and receptors. Am J Physiol Integr Comp Physiol 277:R1321–R1330

    Article  CAS  Google Scholar 

  71. Voelkel NF, Quaife RA, Leinwand LA et al (2006) Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114:1883–1891. https://doi.org/10.1161/CIRCULATIONAHA.106.632208

    Article  PubMed  Google Scholar 

  72. Dessap AM, Leon R, Habibi A et al (2008) Pulmonary hypertension and cor pulmonale during severe acute chest syndrome in sickle cell disease. Am J Respir Crit Care Med 177:646–653. https://doi.org/10.1164/rccm.200710-1606OC

    Article  CAS  Google Scholar 

  73. Bogaard HJ, Abe K, Noordegmaf AV, Voelkel NF (2009) The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 135:794–804. https://doi.org/10.1378/CHEST.08-0492

    Article  CAS  PubMed  Google Scholar 

  74. Chan CM, Klinger JR (2008) The right ventricle in sepsis. Clin Chest Med 29:661–676. https://doi.org/10.1016/J.CCM.2008.07.002

    Article  PubMed  Google Scholar 

  75. Konstantinides S (2008) Acute pulmonary embolism. N Engl J Med 359:2804–2813. https://doi.org/10.1056/NEJMcp0804570

    Article  CAS  PubMed  Google Scholar 

  76. Skrupky LP, Kerby PW, Hotchkiss RS (2011) Advances in the management of sepsis and the understanding of key immunologic defects. Anesthesiology 115:1349–1362. https://doi.org/10.1097/ALN.0b013e31823422e8

    Article  CAS  PubMed  Google Scholar 

  77. Meldrum DR (1998)Tumor necrosis factor in the heart. Am J Physiol 274. https://doi.org/10.1152/ajpregu.1998.274.3.r577

  78. Gold FL, Bache RJ (1982) Transmural right ventricular blood flow during acute pulmonary artery hypertension in the sedated dog. Evidence for subendocardial ischemia despite residual vasodilator reserve. Circ Res 51:196–204

    Article  CAS  Google Scholar 

  79. Zong P, Tune JD, Downey HF (2005) Mechanisms of oxygen demand/supply balance in the right ventricle. Exp Biol Med 230:507–519

    Article  CAS  Google Scholar 

  80. Zamanian RT, Haddad F, Doyle RL, Weinacker AB (2007) Management strategies for patients with pulmonary hypertension in the intensive care unit. Crit Care Med 35:2037–2050. https://doi.org/10.1097/01.CCM.0000280433.74246.9E

    Article  PubMed  Google Scholar 

  81. Keogh AM, Mayer E, Benza RL et al (2009) Interventional and surgical modalities of treatment in pulmonary hypertension. J Am Coll Cardiol 54:S67–S77. https://doi.org/10.1016/j.jacc.2009.04.016

    Article  PubMed  Google Scholar 

  82. Hoeper MM, Barberà JA, Channick RN et al (2009) Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. J Am Coll Cardiol 54:S85–S96. https://doi.org/10.1016/j.jacc.2009.04.008

    Article  PubMed  Google Scholar 

  83. Steele PM, Fuster V, Cohen M et al (1987) Isolated atrial septal defect with pulmonary vascular obstructive disease - long-term follow-up and prediction of outcome after surgical correction. Circulation 76:1037–1042. https://doi.org/10.1161/01.CIR.76.5.1037

    Article  CAS  PubMed  Google Scholar 

  84. La Vecchia L, Varotto L, Zanolla L et al (2006) Right ventricular function predicts transplant-free survival in idiopathic dilated cardiomyopathy. J Cardiovasc Med 7:706–710. https://doi.org/10.2459/01.JCM.0000243006.90170.ce

    Article  Google Scholar 

  85. Pesto S, Begic Z, Prevljak S et al (2016) Pulmonary hypertension - new trends of diagnostic and therapy. Med Arch (Sarajevo, Bosnia Herzegovina) 70:303–307. https://doi.org/10.5455/medarh.2016.70.303-307

    Article  Google Scholar 

  86. MacNee W (1994) State of the art pathophysiology of cor pulmonale in chronic obstrudive. Am J Respir Crit Care Med 150:833–852

    Article  CAS  Google Scholar 

  87. Sztrymf B, Souza R, Bertoletti L et al (2010) Prognostic factors of acute heart failure in patients with pulmonary arterial hypertension. Eur Respir J 35:1286–1293. https://doi.org/10.1183/09031936.00070209

    Article  CAS  PubMed  Google Scholar 

  88. Reesink HJ, Tulevski II, Marcus JT et al (2007) Brain natriuretic peptide as noninvasive marker of the severity of right ventricular dysfunction in chronic thromboembolic pulmonary hypertension. Ann Thorac Surg 84:537–543. https://doi.org/10.1016/J.ATHORACSUR.2007.04.006

    Article  PubMed  Google Scholar 

  89. Lankeit M, Kempf T, Dellas C et al (2008) Growth differentiation factor-15 for prognostic assessment of patients with acute pulmonary embolism. Am J Respir Crit Care Med 177:1018–1025. https://doi.org/10.1164/rccm.200712-1786OC

    Article  CAS  PubMed  Google Scholar 

  90. Nickel N, Kempf T, Tapken H et al (2008) Growth differentiation factor-15 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 178:534–541. https://doi.org/10.1164/rccm.200802-235OC

    Article  CAS  PubMed  Google Scholar 

  91. Forfia PR, Fisher MR, Mathai SC et al (2006) Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 174:1034–1041. https://doi.org/10.1164/rccm.200604-547OC

    Article  PubMed  Google Scholar 

  92. Lega JC, Lacasse Y, Lakhal L, Provencher S (2009) Natriuretic peptides and troponins in pulmonary embolism: a meta-analysis. Thorax 64:869–875. https://doi.org/10.1136/thx.2008.110965

    Article  PubMed  Google Scholar 

  93. Forfia PR, Mathai SC, Fisher MR et al (2008) Hyponatremia predicts right heart failure and poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 177:1364–1369. https://doi.org/10.1164/rccm.200712-1876OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Meluzín J, Špinarová L, Dušek L et al (2003) Prognostic importance of the right ventricular function assessed by Doppler tissue imaging. Eur J Echocardiogr 4:262–271. https://doi.org/10.1016/S1525-2167(02)00171-3

    Article  PubMed  Google Scholar 

  95. Tei C, Dujardin KS, Hodge DO et al (1996) Doppler echocardiographic index for assessment of global right ventricular function. J Am Soc Echocardiogr 9:838–847. https://doi.org/10.1016/S0894-7317(96)90476-9

    Article  CAS  PubMed  Google Scholar 

  96. Fisher MR, Forfia PR, Chamera E et al (2009) Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 179:615–621. https://doi.org/10.1164/rccm.200811-1691OC

    Article  PubMed  PubMed Central  Google Scholar 

  97. Marik PE, Cavallazzi R, Vasu T, Hirani A (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37:2642–2647. https://doi.org/10.1097/CCM.0b013e3181a590da

    Article  PubMed  Google Scholar 

  98. Monnet X, Rienzo M, Osman D et al (2006) Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 34:1402–1407. https://doi.org/10.1097/01.CCM.0000215453.11735.06

    Article  PubMed  Google Scholar 

  99. Suga H (2003) Cardiac energetics: from Emax to pressure–volume area. Clin Exp Pharmacol Physiol 30:580–585

    Article  CAS  Google Scholar 

  100. Hebert PC, Wells G, Blajchman MA et al (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. J Urol 162:280–280. https://doi.org/10.1097/00005392-199907000-00110

    Article  Google Scholar 

  101. Chen X, Zhu W, Tan J et al (2017) Early outcome of early-goal directed therapy for patients with sepsis or septic shock: a systematic review and meta-analysis of randomized controlled trials. Oncotarget 8:27510–27519. https://doi.org/10.18632/oncotarget.15550

  102. Costanzo MR, Guglin ME, Saltzberg MT et al (2007) Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol 49:675–683. https://doi.org/10.1016/j.jacc.2006.07.073

    Article  CAS  PubMed  Google Scholar 

  103. Goldstein JA, Harada A, Yagi Y et al (1990) Hemodynamic importance of systolic ventricular interaction, augmented right atrial contractility and atrioventricular synchrony in acute right ventricular dysfunction. J Am Coll Cardiol 16:181–189. https://doi.org/10.1016/0735-1097(90)90477-7

    Article  CAS  PubMed  Google Scholar 

  104. Balanos GM, Talbot NP, Dorrington KL, Robbins PA (2003) Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol 94:1543–1551. https://doi.org/10.1152/japplphysiol.00890.2002

    Article  PubMed  Google Scholar 

  105. Vieillard-Baron A, Jardin F (2003) Why protect the right ventricle in patients with acute respiratory distress syndrome? Curr Opin Crit Care 9:15–21. https://doi.org/10.1097/00075198-200302000-00004

    Article  PubMed  Google Scholar 

  106. Vieillard-Baron A, Charron C, Caille V et al (2007) Prone positioning unloads the right ventricle in severe ARDS. Chest 132:1440–1446. https://doi.org/10.1378/CHEST.07-1013

    Article  PubMed  Google Scholar 

  107. Roosens CD, Ama R, Leather HA et al (2006) Hemodynamic effects of different lung-protective ventilation strategies in closed-chest pigs with normal lungs. Crit Care Med 34:2990–2996. https://doi.org/10.1097/01.CCM.0000242758.37427.16

    Article  PubMed  Google Scholar 

  108. Fan E, Wilcox ME, Brower RG et al (2008) Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med 178:1156–1163. https://doi.org/10.1164/rccm.200802-335OC

    Article  PubMed  Google Scholar 

  109. Vizza CD, Della Rocca G, Roma DA et al (2001) Acute hemodynamic effects of inhaled nitric oxide, dobutamine and a combination of the two in patients with mild to moderate secondary pulmonary hypertension. Crit Care 5:355–361. https://doi.org/10.1186/cc1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kerbaul F, Rondelet B, Motte S et al (2004) Effects of norepinephrine and dobutamine on pressure load-induced right ventricular failure. Crit Care Med 32:1035–1040. https://doi.org/10.1097/01.CCM.0000120052.77953.07

    Article  CAS  PubMed  Google Scholar 

  111. Angle MR, Molloy DW, Penner B et al (1989) The cardiopulmonary and renal hemodynamic effects of norepinephrine in canine pulmonary embolism. Chest 95:1333–1337. https://doi.org/10.1378/CHEST.95.6.1333

    Article  CAS  PubMed  Google Scholar 

  112. Chen EP, Bittner HB, Davis RD, Van Trigt P (1997) Milrinone improves pulmonary hemodynamics and right ventricular function in chronic pulmonary hypertension. Ann Thorac Surg 63:814–821. https://doi.org/10.1016/S0003-4975(97)00011-8

    Article  CAS  PubMed  Google Scholar 

  113. Hentschel T, Yin N, Riad A et al (2007) Inhalation of the phosphodiesterase-3 inhibitor milrinone attenuates pulmonary hypertension in a rat model of congestive heart failure. Anesthesiology 106:124–131. https://doi.org/10.1097/00000542-200701000-00021

    Article  CAS  PubMed  Google Scholar 

  114. Khazin V, Kaufman Y, Zabeeda D et al (2004) Milrinone and nitric oxide: combined effect on pulmonary artery pressures after cardiopulmonary bypass in children. J Cardiothorac Vasc Anesth 18:156–159. https://doi.org/10.1053/J.JVCA.2004.01.020

    Article  CAS  PubMed  Google Scholar 

  115. Lamarche Y, Malo O, Thorin E et al (2005) Inhaled but not intravenous milrinone prevents pulmonary endothelial dysfunction after cardiopulmonary bypass. J Thorac Cardiovasc Surg 130:83–92. https://doi.org/10.1016/J.JTCVS.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  116. Sebkhi A, Strange JW, Phillips SC et al (2003) Phosphodiesterase type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension. Circulation 107:3230–3235. https://doi.org/10.1161/01.CIR.0000074226.20466.B1

    Article  CAS  PubMed  Google Scholar 

  117. Tsai BM, Wang M, Pitcher JM et al (2005) Zaprinast attenuates hypoxic pulmonary artery injury and causes less aortic relaxation than milrinone. Shock 24:417–420. https://doi.org/10.1097/01.shk.0000183390.98519.05

    Article  CAS  PubMed  Google Scholar 

  118. Schwartz BG, Levine LA, Comstock G et al (2012) Cardiac uses of phosphodiesterase-5 inhibitors. J Am Coll Cardiol 59:9–15. https://doi.org/10.1016/j.jacc.2011.07.051

    Article  CAS  PubMed  Google Scholar 

  119. Kota B, Prasad AS, Economides C, Singh BN (2008) Levosimendan and calcium sensitization of the contractile proteins in cardiac muscle: impact on heart failure. J Cardiovasc Pharmacol Ther 13:269–278. https://doi.org/10.1177/1074248408324550

    Article  CAS  PubMed  Google Scholar 

  120. Kopustinskiene DM, Pollesello P, Saris NEL (2001) Levosimendan is a mitochondrial KATP channel opener. Eur J Pharmacol 428:311–314. https://doi.org/10.1016/S0014-2999(01)01350-4

    Article  CAS  PubMed  Google Scholar 

  121. Morelli A, Teboul JL, Maggiore SM et al (2006) Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress syndrome: a pilot study. Crit Care Med 34:2287–2293. https://doi.org/10.1097/01.CCM.0000230244.17174.4F

    Article  CAS  PubMed  Google Scholar 

  122. Parissis JT, Karavidas A, Bistola V et al (2008) Effects of levosimendan on flow-mediated vasodilation and soluble adhesion molecules in patients with advanced chronic heart failure. Atherosclerosis 197:278–282. https://doi.org/10.1016/J.ATHEROSCLEROSIS.2007.04.023

    Article  CAS  PubMed  Google Scholar 

  123. Missant C, Rex S, Segers P, Wouters PF (2007) Levosimendan improves right ventriculovascular coupling in a porcine model of right ventricular dysfunction. Crit Care Med 35:707–715. https://doi.org/10.1097/01.ccm.0000257326.96342.57

    Article  CAS  PubMed  Google Scholar 

  124. Kaisers U, Busch T, Deja M et al (2003) Selective pulmonary vasodilation in acute respiratory distress syndrome. Crit Care Med 31:337–342. https://doi.org/10.1097/01.ccm.0000057913.45273.1a

    Article  Google Scholar 

  125. Rossaint R, Gerlach H, Schmidt-Ruhnke H et al (1995) Efficacy of inhaled nitric oxide in patients with severe ARDS. Chest 107:1107–1115. https://doi.org/10.1378/CHEST.107.4.1107

    Article  CAS  PubMed  Google Scholar 

  126. Bhorade S, Christenson J, O’Connor M et al (1999) Response to inhaled nitric oxide in patients with acute right heart syndrome. Am J Respir Crit Care Med 159:571–579. https://doi.org/10.1164/ajrccm.159.2.9804127

    Article  CAS  PubMed  Google Scholar 

  127. Fattouch K, Sbraga F, Bianco G et al (2005) Inhaled prostacyclin, nitric oxide, and nitroprusside in pulmonary hypertension after mitral valve replacement. J Card Surg 20:171–176. https://doi.org/10.1111/j.0886-0440.2005.200383w.x

    Article  PubMed  Google Scholar 

  128. Morrell ED, Tsai BM, Crisostomo PR et al (2006) Experimental therapies for hypoxia-induced pulmonary hypertension during acute lung injury. Shock 25:214–226. https://doi.org/10.1097/01.shk.0000191380.44972.46

    Article  CAS  PubMed  Google Scholar 

  129. Meldrum DR, Shames BD, Meng X et al (1998) Nitric oxide downregulates lung macrophage inflammatory cytokine production. Ann Thorac Surg 66:313–317. https://doi.org/10.1016/S0003-4975(98)00525-6

    Article  CAS  PubMed  Google Scholar 

  130. Solina A, Papp D, Ginsberg S et al (2000) A comparison of inhaled nitric oxide and milrinone for the treatment of pulmonary hypertension in adult cardiac surgery patients. J Cardiothorac Vasc Anesth 14:12–17. https://doi.org/10.1016/S1053-0770(00)90048-X

    Article  CAS  PubMed  Google Scholar 

  131. Christenson J, Lavoie A, O’Connor M et al (2000) The incidence and pathogenesis of cardiopulmonary deterioration after abrupt withdrawal of inhaled nitric oxide. Am J Respir Crit Care Med 161:1443–1449. https://doi.org/10.1164/ajrccm.161.5.9806138

    Article  CAS  PubMed  Google Scholar 

  132. Reichenberger F, Pepke-Zaba J, McNeil K et al (2004) Atrial septostomy in the treatment of severe pulmonary arterial hypertension. Heart 90:69. https://doi.org/10.1136/heart.90.1.69

    Article  PubMed Central  Google Scholar 

  133. Dodson MW, Brown LM, Elliott CG (2018) Pulmonary arterial hypertension. Heart Fail Clin 14:255–269. https://doi.org/10.1016/j.hfc.2018.02.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thankfully acknowledge the support extended by Mr. Manoj L. Yellurkar and Mr. Vani Sai Prasanna in literature collection.

Author information

Authors and Affiliations

Authors

Contributions

Idea for the article: Dr. Somasundaram Arumugam. Literature search: Dr. Somasundaram Arumugam, Pamelika Das. Manuscript writing: Pamelika Das. Critical revision of the work: Dr. Somasundaram Arumugam, Dr. Rajarajan A. Thandavarayan, Dr. Kenichi Watanabe, Dr. Ravichandiran Velayutham.

Corresponding authors

Correspondence to Ravichandiran Velayutham or Somasundaram Arumugam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Thandavarayan, R.A., Watanabe, K. et al. Right ventricular failure: a comorbidity or a clinical emergency?. Heart Fail Rev 27, 1779–1793 (2022). https://doi.org/10.1007/s10741-021-10192-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10192-9

Keywords

Navigation