Skip to main content

Advertisement

Log in

A right ventricular state of mind in the progression of heart failure with reduced ejection fraction: implications for left ventricular assist device therapy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Right ventricular (RV) function in patients with preexisting left ventricular (LV) systolic dysfunction is key to determining prognosis and identifying appropriate candidates for cardiac replacement therapy. This becomes particularly relevant during selection for left ventricular assist device (LVAD) therapy, since adequate cardiac output, differently from heart transplantation, still relies on native RV function. Importantly, accumulating evidence indicates that RV failure (RVF) carries detrimental consequences of progressive end-organ dysfunction due to systemic venous congestion-mediated inflammation and oxidative stress. Therefore, it is crucial to detect RVF early on in the disease state through heightened clinical suspicion and noninvasive and/or invasive modalities before the RV fails and organ damage ensues, precluding patients from life saving measures such as LVAD therapy. The purpose of this review is to discuss the pathogenesis of RVF, its systemic consequences, implications for pre- and post-LVAD management, and its impact on clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CO:

Cardiac output

CVP:

Central venous pressure

HF:

Heart failure

LVAD:

Left ventricular assist device

PAP:

Pulmonary artery pressure

PCWP:

Pulmonary capillary wedge pressure

PVR:

Pulmonary vascular resistance

RV:

Right ventricle

RVAD:

Right ventricular assist device

RVF:

Right ventricular failure

TAPSE:

Tricuspid annular peak systolic excursion

TPG:

Transpulmonary gradient

References

  1. Zhou X, Ferrara F, Contaldi C, Bossone E (2019) Right ventricular size and function in chronic heart failure: not to be forgotten. Heart Fail Clin 15:205–217. https://doi.org/10.1016/j.hfc.2018.12.015

    Article  PubMed  Google Scholar 

  2. Amsallem M, Mercier O, Kobayashi Y, Moneghetti K, Haddad F (2018) Forgotten no more: a focused update on the right ventricle in cardiovascular disease. JACC Heart Fail 6:891–903. https://doi.org/10.1016/j.jchf.2018.05.022

    Article  PubMed  Google Scholar 

  3. Rosenkranz S, Gibbs JSR, Wachter R, de Marco T, Vonk-Noordegraaf A, Vachiéry JL (2016) Left ventricular heart failure and pulmonary hypertension. Eur Heart J 37:942–954. https://doi.org/10.1093/eurheartj/ehv512

    Article  PubMed  Google Scholar 

  4. Guazzi M (2018) Pulmonary hypertension and heart failure: a dangerous liaison. Heart Fail Clin 14:297–309. https://doi.org/10.1016/j.hfc.2018.02.006

    Article  PubMed  Google Scholar 

  5. Guazzi M, Naeije R (2017) Pulmonary hypertension in heart failure: pathophysiology, pathobiology, and emerging clinical perspectives. J Am Coll Cardiol 69:1718–1734. https://doi.org/10.1016/j.jacc.2017.01.051

    Article  PubMed  Google Scholar 

  6. Santamore WP, Dell’Italia LJ (1998) Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis 40:289–308. https://doi.org/10.1016/s0033-0620(98)80049-2

    Article  CAS  PubMed  Google Scholar 

  7. Sanz J, Sánchez-Quintana D, Bossone E et al (2019) Anatomy, function, and dysfunction of the right ventricle: JACC state-of-the-art review. J Am Coll Cardiol 73:1463–1482. https://doi.org/10.1016/j.jacc.2018.12.076

    Article  PubMed  Google Scholar 

  8. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL (2001) Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the vesnarinone trial (VEST). Circulation 103:2055–2059. https://doi.org/10.1161/01.cir.103.16.2055

    Article  CAS  PubMed  Google Scholar 

  9. Odeh M, Sabo E, Oliven A (2006) Circulating levels of tumor necrosis factor-alpha correlate positively with severity of peripheral oedema in patients with right heart failure. Eur J Heart Fail 8:141–146. https://doi.org/10.1016/j.ejheart.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  10. Lin J, Chudasama N, Hayashi Y et al (2017) Peripheral venous congestion causes time- and dose-dependent release of endothelin-1 in humans. Physiol Rep 5. https://doi.org/10.14814/phy2.13118

  11. Colombo PC, Onat D, Harxhi A, Demmer RT, Hayashi Y, Jelic S, LeJemtel T, Bucciarelli L, Kebschull M, Papapanou P, Uriel N, Schmidt AM, Sabbah HN, Jorde UP (2014) Peripheral venous congestion causes inflammation, neurohormonal, and endothelial cell activation. Eur Heart J 35:448–454. https://doi.org/10.1093/eurheartj/eht456

    Article  CAS  PubMed  Google Scholar 

  12. Colombo PC, Ganda A, Lin J et al (2012) Inflammatory activation: cardiac, renal, and cardio-renal interactions in patients with the cardiorenal syndrome. Heart Fail Rev 17:177–190. https://doi.org/10.1007/s10741-011-9261-3

    Article  CAS  PubMed  Google Scholar 

  13. Higashiyama H, Yamaguchi M, Kumada K, Sasaki H, Yamaguchi T, Ozawa K (1994) Functional deterioration of the liver by elevated inferior vena cava pressure: a proposed upper safety limit of pressure for maintaining liver viability in dogs. Intensive Care Med 20:124–129. https://doi.org/10.1007/bf01707667

    Article  CAS  PubMed  Google Scholar 

  14. Myers RP, Cerini R, Sayegh R et al (2003) Cardiac hepatopathy: clinical, hemodynamic, and histologic characteristics and correlations. Hepatol Baltim Md 37:393–400. https://doi.org/10.1053/jhep.2003.50062

    Article  Google Scholar 

  15. Tanaka M, Yoshida H, Furuhashi M et al (2011) Deterioration of renal function by chronic heart failure is associated with congestion and oxidative stress in the tubulointerstitium. Intern Med Tokyo Jpn 50:2877–2887. https://doi.org/10.2169/internalmedicine.50.5925

    Article  CAS  Google Scholar 

  16. Polsinelli VB, Sinha A, Shah SJ (2017) Visceral congestion in heart failure: right ventricular dysfunction, splanchnic hemodynamics, and the intestinal microenvironment. Curr Heart Fail Rep 14:519–528. https://doi.org/10.1007/s11897-017-0370-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, Tang WH, Mullens W (2013) Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol 62:485–495. https://doi.org/10.1016/j.jacc.2013.04.070

    Article  PubMed  Google Scholar 

  18. Pasini E, Aquilani R, Testa C, Baiardi P, Angioletti S, Boschi F, Verri M, Dioguardi F (2016) Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail 4:220–227. https://doi.org/10.1016/j.jchf.2015.10.009

    Article  PubMed  Google Scholar 

  19. Sandek A, Bjarnason I, Volk H-D, Crane R, Meddings JB, Niebauer J, Kalra PR, Buhner S, Herrmann R, Springer J, Doehner W, von Haehling S, Anker SD, Rauchhaus M (2012) Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol 157:80–85. https://doi.org/10.1016/j.ijcard.2010.12.016

    Article  PubMed  Google Scholar 

  20. Nagatomo Y, Tang WHW (2015) Intersections between microbiome and heart failure: revisiting the gut hypothesis. J Card Fail 21:973–980. https://doi.org/10.1016/j.cardfail.2015.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xanthopoulos A, Starling RC, Kitai T, Triposkiadis F (2019) Heart failure and liver disease: cardiohepatic interactions. JACC Heart Fail 7:87–97. https://doi.org/10.1016/j.jchf.2018.10.007

    Article  PubMed  Google Scholar 

  22. Haghikia A, Li XS, Liman TG et al (2018) Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol 38:2225–2235. https://doi.org/10.1161/ATVBAHA.118.311023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heianza Y, Ma W, Manson JE et al (2017) Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc 6. https://doi.org/10.1161/JAHA.116.004947

  24. Suzuki T, Yazaki Y, Voors AA, Jones DJL, Chan DCS, Anker SD, Cleland JG, Dickstein K, Filippatos G, Hillege HL, Lang CC, Ponikowski P, Samani NJ, van Veldhuisen D, Zannad F, Zwinderman AH, Metra M, Ng LL (2019) Association with outcomes and response to treatment of trimethylamine N-oxide in heart failure: results from BIOSTAT-CHF. Eur J Heart Fail 21:877–886. https://doi.org/10.1002/ejhf.1338

    Article  CAS  PubMed  Google Scholar 

  25. Yang W, Zhang S, Zhu J, Jiang H, Jia D, Ou T, Qi Z, Zou Y, Qian J, Sun A, Ge J (2019) Gut microbe-derived metabolite trimethylamine N-oxide accelerates fibroblast-myofibroblast differentiation and induces cardiac fibrosis. J Mol Cell Cardiol 134:119–130. https://doi.org/10.1016/j.yjmcc.2019.07.004

    Article  CAS  PubMed  Google Scholar 

  26. Savi M, Bocchi L, Bresciani L et al (2018) Trimethylamine-N-oxide (TMAO)-induced impairment of cardiomyocyte function and the protective role of Urolithin B-Glucuronide. Mol Basel Switz 23. https://doi.org/10.3390/molecules23030549

  27. Westerhof BE, Saouti N, van der Laarse WJ et al (2017) Treatment strategies for the right heart in pulmonary hypertension. Cardiovasc Res 113:1465–1473. https://doi.org/10.1093/cvr/cvx148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Groote P, Fertin M, Goéminne C, Petyt G, Peyrot S, Foucher-Hossein C, Mouquet F, Bauters C, Lamblin N (2012) Right ventricular systolic function for risk stratification in patients with stable left ventricular systolic dysfunction: comparison of radionuclide angiography to echoDoppler parameters. Eur Heart J 33:2672–2679. https://doi.org/10.1093/eurheartj/ehs080

    Article  PubMed  Google Scholar 

  29. Ghio S, Guazzi M, Scardovi AB, Klersy C, Clemenza F, Carluccio E, Temporelli PL, Rossi A, Faggiano P, Traversi E, Vriz O, Dini FL, all investigators (2017) Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur J Heart Fail 19:873–879. https://doi.org/10.1002/ejhf.664

    Article  CAS  PubMed  Google Scholar 

  30. Gulati A, Ismail TF, Jabbour A, Alpendurada F, Guha K, Ismail NA, Raza S, Khwaja J, Brown TD, Morarji K, Liodakis E, Roughton M, Wage R, Pakrashi TC, Sharma R, Carpenter JP, Cook SA, Cowie MR, Assomull RG, Pennell DJ, Prasad SK (2013) The prevalence and prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardiomyopathy. Circulation 128:1623–1633. https://doi.org/10.1161/CIRCULATIONAHA.113.002518

    Article  PubMed  Google Scholar 

  31. Haddad F, Doyle R, Murphy DJ, Hunt SA (2008) Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117:1717–1731. https://doi.org/10.1161/CIRCULATIONAHA.107.653584

    Article  PubMed  Google Scholar 

  32. Meyer P, Filippatos GS, Ahmed MI, Iskandrian AE, Bittner V, Perry GJ, White M, Aban IB, Mujib M, Dell'Italia LJ, Ahmed A (2010) Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation 121:252–258. https://doi.org/10.1161/CIRCULATIONAHA.109.887570

    Article  PubMed  PubMed Central  Google Scholar 

  33. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117:1436–1448. https://doi.org/10.1161/CIRCULATIONAHA.107.653576

    Article  PubMed  Google Scholar 

  34. Houston BA, Shah KB, Mehra MR, Tedford RJ (2017) A new “twist” on right heart failure with left ventricular assist systems. J Heart Lung Transplant 36:701–707. https://doi.org/10.1016/j.healun.2017.03.014

    Article  PubMed  Google Scholar 

  35. Dutta T, Aronow WS (2017) Echocardiographic evaluation of the right ventricle: clinical implications. Clin Cardiol 40:542–548. https://doi.org/10.1002/clc.22694

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aissaoui N, Salem J-E, Paluszkiewicz L, Morshuis M, Guerot E, Gorria GM, Fagon JY, Gummert J, Diebold B (2015) Assessment of right ventricular dysfunction predictors before the implantation of a left ventricular assist device in end-stage heart failure patients using echocardiographic measures (ARVADE): combination of left and right ventricular echocardiographic variables. Arch Cardiovasc Dis 108:300–309. https://doi.org/10.1016/j.acvd.2015.01.011

    Article  PubMed  Google Scholar 

  37. La Gerche A, Claessen G (2019) Right ventricular function: the barometer of all that lies ahead. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2018.12.018

  38. Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, Arbustini E, Recusani F, Tavazzi L (2001) Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 37:183–188. https://doi.org/10.1016/s0735-1097(00)01102-5

    Article  CAS  PubMed  Google Scholar 

  39. Guazzi M, Bandera F, Pelissero G et al (2013) Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. Am J Physiol Heart Circ Physiol 305:H1373–H1381. https://doi.org/10.1152/ajpheart.00157.2013

    Article  CAS  PubMed  Google Scholar 

  40. Andersen MJ, Hwang S-J, Kane GC, Melenovsky V, Olson TP, Fetterly K, Borlaug BA (2015) Enhanced pulmonary vasodilator reserve and abnormal right ventricular: pulmonary artery coupling in heart failure with preserved ejection fraction. Circ Heart Fail 8:542–550. https://doi.org/10.1161/CIRCHEARTFAILURE.114.002114

    Article  PubMed  Google Scholar 

  41. Bosch L, Lam CSP, Gong L, Chan SP, Sim D, Yeo D, Jaufeerally F, Leong KTG, Ong HY, Ng TP, Richards AM, Arslan F, Ling LH (2017) Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur J Heart Fail 19:1664–1671. https://doi.org/10.1002/ejhf.873

    Article  CAS  PubMed  Google Scholar 

  42. Gerges M, Gerges C, Pistritto A-M, Lang MB, Trip P, Jakowitsch J, Binder T, Lang IM (2015) Pulmonary hypertension in heart failure. epidemiology, right ventricular function, and survival. Am J Respir Crit Care Med 192:1234–1246. https://doi.org/10.1164/rccm.201503-0529OC

    Article  PubMed  Google Scholar 

  43. Gorter TM, van Veldhuisen DJ, Voors AA, Hummel YM, Lam CSP, Berger RMF, van Melle J, Hoendermis ES (2018) Right ventricular-vascular coupling in heart failure with preserved ejection fraction and pre- vs. post-capillary pulmonary hypertension. Eur Heart J Cardiovasc Imaging 19:425–432. https://doi.org/10.1093/ehjci/jex133

    Article  PubMed  Google Scholar 

  44. Hussain I, Mohammed SF, Forfia PR, Lewis GD, Borlaug BA, Gallup DS, Redfield MM (2016) Impaired right ventricular-pulmonary arterial coupling and effect of sildenafil in heart failure with preserved ejection fraction: an ancillary analysis from the phosphodiesterase-5 inhibition to improve clinical status and exercise capacity in diastolic heart failure (RELAX) trial. Circ Heart Fail 9:e002729. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002729

    Article  CAS  PubMed  Google Scholar 

  45. Melenovsky V, Hwang S-J, Lin G, Redfield MM, Borlaug BA (2014) Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J 35:3452–3462. https://doi.org/10.1093/eurheartj/ehu193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robaeys W, Bektas S, Boyne J, van Empel V, Uszko-Lencer N, Knackstedt C, Brunner-la Rocca HP (2017) Pulmonary and right ventricular dysfunction are frequently present in heart failure irrespective of left ventricular ejection fraction. Heart Asia 9:e010914. https://doi.org/10.1136/heartasia-2017-010914

    Article  PubMed  PubMed Central  Google Scholar 

  47. Santas E, Palau P, Guazzi M, de la Espriella R, Miñana G, Sanchis J, Bayes-Genís A, Lupón J, Chorro FJ, Núñez J (2019) Usefulness of right ventricular to pulmonary circulation coupling as an indicator of risk for recurrent admissions in heart failure with preserved ejection fraction. Am J Cardiol 124:567–572. https://doi.org/10.1016/j.amjcard.2019.05.024

    Article  PubMed  Google Scholar 

  48. Abouzeid CM, Shah T, Johri A, Weinsaft JW, Kim J (2017) Multimodality imaging of the right ventricle. Curr Treat Options Cardiovasc Med 19:82. https://doi.org/10.1007/s11936-017-0584-9

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gorter TM, van Veldhuisen DJ, Bauersachs J et al (2018) Right heart dysfunction and failure in heart failure with preserved ejection fraction: mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 20:16–37. https://doi.org/10.1002/ejhf.1029

    Article  PubMed  Google Scholar 

  50. Naeije R, Vanderpool R, Peacock A, Badagliacca R (2018) The right heart-pulmonary circulation unit: physiopathology. Heart Fail Clin 14:237–245. https://doi.org/10.1016/j.hfc.2018.02.001

    Article  PubMed  Google Scholar 

  51. Sano H, Tanaka H, Motoji Y et al (2018) Echocardiography during preload stress for evaluation of right ventricular contractile reserve and exercise capacity in pulmonary hypertension. Echocardiogr Mt Kisco N 35:1997–2004. https://doi.org/10.1111/echo.14161

    Article  Google Scholar 

  52. Sharma T, Lau EMT, Choudhary P, Torzillo PJ, Munoz PA, Simmons LR, Naeije R, Celermajer DS (2015) Dobutamine stress for evaluation of right ventricular reserve in pulmonary arterial hypertension. Eur Respir J 45:700–708. https://doi.org/10.1183/09031936.00089914

    Article  CAS  PubMed  Google Scholar 

  53. Gorcsan J, Murali S, Counihan PJ et al (1996) Right ventricular performance and contractile reserve in patients with severe heart failure. Assessment by pressure-area relations and association with outcome. Circulation 94:3190–3197. https://doi.org/10.1161/01.cir.94.12.3190

    Article  PubMed  Google Scholar 

  54. Di Salvo TG, Mathier M, Semigran MJ, Dec GW (1995) Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol 25:1143–1153. https://doi.org/10.1016/0735-1097(94)00511-n

    Article  PubMed  Google Scholar 

  55. Guazzi M, Villani S, Generati G, Ferraro OE, Pellegrino M, Alfonzetti E, Labate V, Gaeta M, Sugimoto T, Bandera F (2016) Right ventricular contractile reserve and pulmonary circulation uncoupling during exercise challenge in heart failure: pathophysiology and clinical phenotypes. JACC Heart Fail 4:625–635. https://doi.org/10.1016/j.jchf.2016.03.007

    Article  PubMed  Google Scholar 

  56. Drazner MH, Velez-Martinez M, Ayers CR, Reimold SC, Thibodeau JT, Mishkin JD, Mammen PP, Markham DW, Patel CB (2013) Relationship of right- to left-sided ventricular filling pressures in advanced heart failure: insights from the ESCAPE trial. Circ Heart Fail 6:264–270. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000204

    Article  PubMed  Google Scholar 

  57. Armstrong HF, Schulze PC, Kato TS, Bacchetta M, Thirapatarapong W, Bartels MN (2013) Right ventricular stroke work index as a negative predictor of mortality and initial hospital stay after lung transplantation. J Heart Lung Transplant 32:603–608. https://doi.org/10.1016/j.healun.2013.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  58. Frea S, Bovolo V, Bergerone S, D'Ascenzo F, Antolini M, Capriolo M, Canavosio FG, Morello M, Gaita F (2012) Echocardiographic evaluation of right ventricular stroke work index in advanced heart failure: a new index? J Card Fail 18:886–893. https://doi.org/10.1016/j.cardfail.2012.10.018

    Article  PubMed  Google Scholar 

  59. Kang G, Ha R, Banerjee D (2016) Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant 35:67–73. https://doi.org/10.1016/j.healun.2015.06.009

    Article  PubMed  Google Scholar 

  60. Korabathina R, Heffernan KS, Paruchuri V et al (2012) The pulmonary artery pulsatility index identifies severe right ventricular dysfunction in acute inferior myocardial infarction. Catheter Cardiovasc Interv 80:593–600. https://doi.org/10.1002/ccd.23309

    Article  PubMed  Google Scholar 

  61. Morine KJ, Kiernan MS, Pham DT, Paruchuri V, Denofrio D, Kapur NK (2016) Pulmonary artery pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail 22:110–116. https://doi.org/10.1016/j.cardfail.2015.10.019

    Article  PubMed  Google Scholar 

  62. Kato TS, Stevens GR, Jiang J, Schulze PC, Gukasyan N, Lippel M, Levin A, Homma S, Mancini D, Farr M (2013) Risk stratification of ambulatory patients with advanced heart failure undergoing evaluation for heart transplantation. J Heart Lung Transplant 32:333–340. https://doi.org/10.1016/j.healun.2012.11.026

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kirklin JK, Naftel DC, Stevenson LW et al (2008) INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant 27:1065–1072. https://doi.org/10.1016/j.healun.2008.07.021

    Article  PubMed  Google Scholar 

  64. Interagency Registry for Mechanically Assisted Circulatory Suport Appendix A - adverse event definitions. UAB School of Medicine. https://www.uab.edu/medicine/intermacs/intermacs-documents

  65. Hayek S, Sims DB, Markham DW, Butler J, Kalogeropoulos AP (2014) Assessment of right ventricular function in left ventricular assist device candidates. Circ Cardiovasc Imaging 7:379–389. https://doi.org/10.1161/CIRCIMAGING.113.001127

    Article  PubMed  PubMed Central  Google Scholar 

  66. Argiriou M, Kolokotron S-M, Sakellaridis T et al (2014) Right heart failure post left ventricular assist device implantation. J Thorac Dis 6(Suppl 1):S52–S59. https://doi.org/10.3978/j.issn.2072-1439.2013.10.26

    Article  PubMed  PubMed Central  Google Scholar 

  67. Goldraich L, Kawajiri H, Foroutan F, Braga J, Billia P, Misurka J, Stansfield WE, Yau T, Ross HJ, Rao V (2016) Tricuspid valve annular dilation as a predictor of right ventricular failure after implantation of a left ventricular assist device. J Card Surg 31:110–116. https://doi.org/10.1111/jocs.12685

    Article  PubMed  Google Scholar 

  68. de Waal EEC, van Zaane B, van der Schoot MM, Huisman A, Ramjankhan F, van Klei W, Marczin N (2018) Vasoplegia after implantation of a continuous flow left ventricular assist device: incidence, outcomes and predictors. BMC Anesthesiol 18:185. https://doi.org/10.1186/s12871-018-0645-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tecson KM, Lima B, Lee AY et al (2018) Determinants and outcomes of vasoplegia following left ventricular assist device implantation. J Am Heart Assoc 7. https://doi.org/10.1161/JAHA.117.008377

  70. van Vessem ME, Palmen M, Couperus LE et al (2017) Incidence and predictors of vasoplegia after heart failure surgery. Eur J Cardio-Thorac Surg 51:532–538. https://doi.org/10.1093/ejcts/ezw316

    Article  Google Scholar 

  71. Han J, Pinsino A, Sanchez J et al (2019) Prognostic value of vasoactive-inotropic score following continuous flow left ventricular assist device implantation. J Heart Lung Transplant 38:930–938. https://doi.org/10.1016/j.healun.2019.05.007

    Article  PubMed  Google Scholar 

  72. Coromilas EJ, Takeda K, Ando M et al (2019) Comparison of percutaneous and surgical right ventricular assist device support after durable left ventricular assist device insertion. J Card Fail 25:105–113. https://doi.org/10.1016/j.cardfail.2018.12.005

    Article  PubMed  Google Scholar 

  73. Takeda K, Naka Y, Yang JA et al (2013) Timing of temporary right ventricular assist device insertion for severe right heart failure after left ventricular assist device implantation. ASAIO J Am Soc Artif Intern Organs 59:564–569. https://doi.org/10.1097/MAT.0b013e3182a816d1

    Article  Google Scholar 

  74. Takeda K, Naka Y, Yang JA et al (2014) Outcome of unplanned right ventricular assist device support for severe right heart failure after implantable left ventricular assist device insertion. J Heart Lung Transplant 33:141–148. https://doi.org/10.1016/j.healun.2013.06.025

    Article  PubMed  Google Scholar 

  75. Yoshioka D, Takayama H, Garan RA, Topkara VK, Han J, Kurlansky P, Yuzefpolskaya M, Colombo PC, Naka Y, Takeda K (2017) Contemporary outcome of unplanned right ventricular assist device for severe right heart failure after continuous-flow left ventricular assist device insertion. Interact Cardiovasc Thorac Surg 24:828–834. https://doi.org/10.1093/icvts/ivw409

    Article  PubMed  Google Scholar 

  76. Takeda K, Takayama H, Colombo PC et al (2015) Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support. J Heart Lung Transplant 34:1024–1032. https://doi.org/10.1016/j.healun.2015.03.011

    Article  PubMed  Google Scholar 

  77. Kiernan MS, Sundareswaran KS, Pham DT, Kapur NK, Pereira NL, Strueber M, Farrar DJ, DeNofrio D, Rogers JG (2016) Preoperative determinants of quality of life and functional capacity response to left ventricular assist device therapy. J Card Fail 22:797–805. https://doi.org/10.1016/j.cardfail.2016.01.006

    Article  PubMed  Google Scholar 

  78. Dunlay SM, Allison TG, Pereira NL (2014) Changes in cardiopulmonary exercise testing parameters following continuous flow left ventricular assist device implantation and heart transplantation. J Card Fail 20:548–554. https://doi.org/10.1016/j.cardfail.2014.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mehra MR, Naka Y, Uriel N, Goldstein DJ, Cleveland JC Jr, Colombo PC, Walsh MN, Milano CA, Patel CB, Jorde UP, Pagani FD, Aaronson KD, Dean DA, McCants K, Itoh A, Ewald GA, Horstmanshof D, Long JW, Salerno C, MOMENTUM 3 Investigators (2017) A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med 376:440–450. https://doi.org/10.1056/NEJMoa1610426

    Article  PubMed  Google Scholar 

  80. Mehra MR, Goldstein DJ, Uriel N, Cleveland JC Jr, Yuzefpolskaya M, Salerno C, Walsh MN, Milano CA, Patel CB, Ewald GA, Itoh A, Dean D, Krishnamoorthy A, Cotts WG, Tatooles AJ, Jorde UP, Bruckner BA, Estep JD, Jeevanandam V, Sayer G, Horstmanshof D, Long JW, Gulati S, Skipper ER, O'Connell JB, Heatley G, Sood P, Naka Y, MOMENTUM 3 Investigators (2018) Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N Engl J Med 378:1386–1395. https://doi.org/10.1056/NEJMoa1800866

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melana Yuzefpolskaya.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeFilippis, E.M., Guazzi, M., Colombo, P.C. et al. A right ventricular state of mind in the progression of heart failure with reduced ejection fraction: implications for left ventricular assist device therapy. Heart Fail Rev 26, 1467–1475 (2021). https://doi.org/10.1007/s10741-020-09935-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09935-x

Keywords

Navigation