Journal of Grid Computing

, Volume 6, Issue 1, pp 29–43 | Cite as

Grid-enabled Virtual Screening Against Malaria

  • N. Jacq
  • J. Salzemann
  • F. Jacq
  • Y. Legré
  • E. Medernach
  • J. Montagnat
  • A. Maaß
  • M. Reichstadt
  • H. Schwichtenberg
  • M. Sridhar
  • V. Kasam
  • M. Zimmermann
  • M. Hofmann
  • V. Breton
Article

Abstract

WISDOM is an international initiative to enable a virtual screening pipeline on a Grid infrastructure. Its first attempt was to deploy large scale in silico docking on a public Grid infrastructure. Protein–ligand docking is about computing the binding energy of a protein target to a library of potential drugs using a scoring algorithm. Previous deployments were either limited to one cluster, to Grids of clusters in the tightly protected environment of a pharmaceutical laboratory or to desktop Grids. The first large scale docking experiment ran on the EGEE Grid production service from 11 July 2005 to 19 August 2005 against targets relevant to research on malaria and saw over 41 million compounds docked for the equivalent of 80 years of CPU time. Up to 1,700 computers were simultaneously used in 15 countries around the world. Issues related to the deployment and the monitoring of the in silico docking experiment as well as experience with Grid operation and services are reported in the paper. The main problem encountered for such a large scale deployment was the Grid infrastructure stability. Although the overall success rate was above 80%, a lot of monitoring and supervision was still required at the application level to resubmit the jobs that failed. But the experiment demonstrated how Grid infrastructures have a tremendous capacity to mobilize very large CPU resources for well targeted goals during a significant period of time. This success leads to a second computing challenge targeting avian flu neuraminidase N1.

Keywords

Data challenge Drug discovery Grid computing Grid infrastructure In silico docking Virtual screening Malaria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spencer, R.W.: High throughput virtual screening of historic collections on the file size, biological targets, and file diversity. Biotechnol. Bioeng. 61, 61–67 (1998)CrossRefGoogle Scholar
  2. 2.
    Anderson, A.C.: The process of structure-based drug design. Chem. Biol. 10, 787–797 (2003)CrossRefGoogle Scholar
  3. 3.
    Lyne, P.D.: Structure-based virtual screening: an overview. Drug Discov. Today 7, 1047–1055 (2002)CrossRefGoogle Scholar
  4. 4.
    Buyya, R., Branson, K., Giddy, J., Abramson, D.: The Virtual Laboratory: a toolset to enable distributed molecular modeling for drug design on the World-Wide Grid. Concurrency Computat. Pract. Exper. 15, 1–25 (2003)MATHCrossRefGoogle Scholar
  5. 5.
    Chien, A., Foster, I., Goddette, D.: Grid technologies empowering drug discovery. Drug Discov. Today 7 Suppl 20, 176–180 (2002)CrossRefGoogle Scholar
  6. 6.
    Garcia Aristegui, D.J., Mendez Lorenzo, P., Valverde, J.R.: GROCK: high-throughput docking using LCG Grid tools. In: The 6th IEEE/ACM International Workshop on Grid Computing, 85–90 (2005)Google Scholar
  7. 7.
    Sudholt, W., Baldridge, K.K., Abramson, D., Enticott, C., Garic, S., Kondric, C., Nguyen, D.: Application of Grid computing to parameter sweeps and optimizations in molecular modelling. Future Gener. Comput. Syst. 21, 27–35 (2005)CrossRefGoogle Scholar
  8. 8.
    Graham Richards, W.: Virtual screening using Grid computing: the screensaver project. Nat. Rev. Drug Discov. 1, 551–555 (2002)CrossRefGoogle Scholar
  9. 9.
    Oram, A. (ed.) Peer-to-peer: harnessing the Power of Disruptive Technologies. O’Reilly Press, CA (2001)Google Scholar
  10. 10.
    Loewe, L.: Global computing for bioinformatics. Brief. Bioinform. 3, 377–388 (2002)CrossRefGoogle Scholar
  11. 11.
    Peitsch, M. C., et al.: Informatics and knowledge management at the Novartis Institutes for BioMedical Research. SCIP 46, 1–4 (2004)Google Scholar
  12. 12.
    Jacq, N., et al.: Demonstration of In Silico Docking at a Large Scale on Grid Infrastructure. Studies in Health Technology and Informatics 120 155–157. http://wisdom.healthGrid.org/ (2006)
  13. 13.
    Solomonides, T., McClatchey, R., Breton, V., Legré, Y., Nørager, S.: White paper HealthGrid. In: Proceedings of HealthGrid 2005, IOS Press, 112 (2005)Google Scholar
  14. 14.
    Breton, V., Hofmann, M., Jacq, N.: Grid added value to address malaria. In: Proceedings of the 6th IEEE/ACM CCGrid Conference (2006)Google Scholar
  15. 15.
    Jacq, N., Blanchet, C., Combet, C., Cornillot, E., Duret, L., Kurata, K., Nakamura, H., Silvestre, T., Breton, V.: Grid as a bioinformatics tool. Parallel Comput. 30, 1093–1107 (2004)CrossRefGoogle Scholar
  16. 16.
    Campana, S., et al.: Analysis of the ATLAS Rome Production Experience on the LHC computing Grid. In: IEEE International Conference on e-Science and Grid Computing (2005)Google Scholar
  17. 17.
    Bird, I., et al.: Operating the LCG and EGEE production Grids for HEP. In: Proceedings of the CHEP‘04 Conference (2004)Google Scholar
  18. 18.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)Google Scholar
  19. 19.
    Sulakhe, D., et al.: GNARE: an environment for Grid-based high-throughput genome analysis. In: CCGrid 2005 BioGrid Workshop (2005)Google Scholar
  20. 20.
    Taufer, M., et al.: Predictor@home: a “Protein Structure Prediction Supercomputer” based on public-resource computing. IEEE Trans. Parallel Distrib. Syst. 17(8), 786–796 (2006)CrossRefGoogle Scholar
  21. 21.
    Stefan, M., et al.: Folding@Home and Genome@Home: using distributed computing to tackle previously intractable problems in computational biology. citeseer.ist.psu.edu/589744.html (2002)
  22. 22.
    Chien, A., et al.: Grid technologies empowering drug discovery. Drug Discov. Today 7(20), 176–180 (2002)CrossRefGoogle Scholar
  23. 23.
    Ziegler, R., Pharma GRIDs: Key to pharmaceutical innovation? In: Proceedings of the HealthGrid conference 2004 (2004).Google Scholar
  24. 24.
    Weisner, J., Ortmann, R., Jomaa, H., Schlitzer, M.: New Antimalarial drugs. Angew. Chem. Int. 42, 5274–5529 (2003)CrossRefGoogle Scholar
  25. 25.
    Francis, S. E., Sullivan, D. J. Jr., Goldberg, D.E.: Hemoglobin metabolism in the malaria parasite plasmodium falciparum. Annu. Rev. Microbiol. 51, 97–123 (1997)CrossRefGoogle Scholar
  26. 26.
    Coombs, G.H., Goldberg, D.E., Klemba, M., Berry, C., Kay, J., Mottram, J.C.: Aspartic proteases of plasmodium falciparum and other protozoa as drug targets. Trends Parasitol. 17, 532–537 (2001)CrossRefGoogle Scholar
  27. 27.
    Silva, A.M., Lee, A.Y., Gulnik, S.V., Majer, P., Collins, J., Bhat, T.N., Collins, P.J., Cachau, R.E., Luker, K.E., Gluzman, I.Y., Francis, S.E., Oksman, A., Goldberg, D.E., Erickson, J.W.: Structure and inhibition of plasmepsin II, A haemoglobin degrading enzyme from Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 93, 10034–10039 (1996)CrossRefGoogle Scholar
  28. 28.
    Gagliardi, F., Jones, B., Grey, F., Bégin, M.E., Heikkurinen, M.: Building an infrastructure for scientific Grid computing: status and goals of the EGEE project, Philos. Trans. Royal Soc. Math. Phys. Eng. Sci. 363, 1729–1742 (2005)CrossRefGoogle Scholar
  29. 29.
    The LCG Editorial Board: LHC Computing Grid Technical Design Report. CERN-LHCC-2005-024. LCG, France (2005)Google Scholar
  30. 30.
    Raman, R., Livny, M., Solomon, M.: Matchmaking: distributed resource management for high throughput computing. In: Proceedings of the 12th IEEE International Symposium on High-performance Distributed Computing (2003)Google Scholar
  31. 31.
    Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: Predicting Receptor–Ligand interactions by an incremental construction algorithm. J. Mol. Biol. 261, 470–489 (1996)CrossRefGoogle Scholar
  32. 32.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J. Computat. Chem. 19, 1639–1662 (1998)CrossRefGoogle Scholar
  33. 33.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)CrossRefGoogle Scholar
  34. 34.
    Irwin, J.J., Shoichet, B.K.: ZINC – a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45(1), 177–182 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • N. Jacq
    • 1
    • 2
  • J. Salzemann
    • 1
  • F. Jacq
    • 1
  • Y. Legré
    • 1
  • E. Medernach
    • 1
  • J. Montagnat
    • 3
  • A. Maaß
    • 4
  • M. Reichstadt
    • 1
  • H. Schwichtenberg
    • 4
  • M. Sridhar
    • 5
  • V. Kasam
    • 5
  • M. Zimmermann
    • 5
  • M. Hofmann
    • 5
  • V. Breton
    • 1
  1. 1.Laboratoire de Physique CorpusculaireUniversité Blaise Pascal/IN2P3-CNRS UMR 6533AubièreFrance
  2. 2.Communication & SystèmesGrenobleFrance
  3. 3.Informatique Signaux et SystèmesUniversité de Nice Sophia Antipolis/CNRS UMR 6070Sophia AntipolisFrance
  4. 4.Department of Simulation EngineeringFraunhofer Institute for Algorithms and Scientific ComputingSankt AugustinGermany
  5. 5.Department of BioinformaticsFraunhofer Institute for Algorithms and Scientific ComputingSankt AugustinGermany

Personalised recommendations