Skip to main content

HiTViSc: High-Throughput Virtual Screening as a Service

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2023)

Abstract

High-performance and high-throughput computing play an important role in drug development and, in particular, in solving the computationally intensive problem of virtual screening. The variety and complexity of tools require technical knowledge for selection, setup and usage of the computational platform. There is need for ready solutions and services to simplify the process. With low cost and high scalability, Desktop Grid systems can significantly expand the computational capacity available for a virtual screening. This paper describes High-Throughput Virtual Screening as a Service (HiTViSc): we present three logical levels of operation (computational, virtual screening and user level), the user workflows related to virtual screening, resource administration and visualization and analysis of results, and the multi-user access. The novelty of the work is related to implementation of the Desktop Grid as a Service concept. In particular, comparing to other cloud-based virtual screening services, we use Desktop Grid resources to implement computationally intensive work. Comparing to umbrella Desktop Grid projects, the users of HiTViSc can be both consumers and providers of computing resources at the same time, and employ additional steps of virtual screening based on supportive utilities provided by HiTViSc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gitlab.com/Jukic/cmdock/-/blob/master/docs/reference-guide/docking-protocol.rst.

References

  1. Blaze Cloud from Cresset. https://www.cresset-group.com/products/blaze/#blaze-cloud. Accessed 31 Jan 2023

  2. Anderson, D.P.: BOINC: a platform for volunteer computing. J. Grid Comput. 18(1), 99–122 (2020)

    Article  Google Scholar 

  3. Berman, H.M., et al.: The protein data bank. Nucl. Acids Res. 28(1), 235–242 (2000). https://doi.org/10.1093/nar/28.1.235

  4. Chernov, I.: Effective scanning of parameter space in a desktop grid for identification of a hydride decomposition model. Program Syst. Theory Appl. 9(4(39)), 53–68 (2018). https://doi.org/10.25209/2079-3316-2018-9-4-53-68

  5. Climateprediction.net | the world’s largest climate modelling experiment for the 21st century. https://www.climateprediction.net. Accessed 31 Mar 2023

  6. Glaser, J., et al.: High-throughput virtual laboratory for drug discovery using massive datasets. Int. J. High Perform. Comput. Appl. 35(5), 452–468 (2021)

    Article  Google Scholar 

  7. Hawkins, P.: Virtual Screening At Ultra-Large Scale: 1.5 Billion And Counting - Webinars. https://www.healthtech.com/openeye-scientific-virtual-screening-at-ultra-large-scale/. Accessed 31 Jan 2023

  8. Home | LHC@home. https://lhcathome.web.cern.ch. Accessed 31 Mar 2023

  9. Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., Coleman, R.G.: Zinc: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52(7), 1757–1768 (2012). https://doi.org/10.1021/ci3001277

    Article  Google Scholar 

  10. Ivashko, E.: Desktop Grid as a service concept. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds.) Supercomputing: 8th Russian Supercomputing Days, RuSCDays 2022. LNCS, vol. 13708, pp. 632–643. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22941-1_46

    Chapter  Google Scholar 

  11. Ivashko, E.E., Nikitina, N.N., Möller, S.: High-performance virtual screening in a BOINC-based Enterprise Desktop Grid. Vestnik Yuzhno-Ural’skogo Gosudarstvennogo Universiteta. Seriya Vychislitelnaya Matematika i Informatika 4(1), 57–63 (2015)

    Google Scholar 

  12. Jaghoori, M.M., Bleijlevens, B., Olabarriaga, S.D.: 1001 ways to run AutoDock Vina for virtual screening. J. Comput. Aided Mol. Des. 30, 237–249 (2016)

    Article  Google Scholar 

  13. Krasoulis, A., Antonopoulos, N., Pitsikalis, V., Theodorakis, S.: DENVIS: scalable and high-throughput virtual screening using graph neural networks with atomic and surface protein pocket features. J. Chem. Inf. Model. 62(19), 4642–4659 (2022)

    Article  Google Scholar 

  14. Liu, T., et al.: Applying high-performance computing in drug discovery and molecular simulation. Natl. Sci. Rev. 3(1), 49–63 (2016)

    Article  Google Scholar 

  15. Mo, Q., Xu, Z., Yan, H., Chen, P., Lu, Y.: VSTH: a user-friendly web server for structure-based virtual screening on Tianhe-2. Bioinformatics 39(1), btac740 (2023)

    Google Scholar 

  16. Murugan, N.A., Podobas, A., Gadioli, D., Vitali, E., Palermo, G., Markidis, S.: A review on parallel virtual screening softwares for high-performance computers. Pharmaceuticals 15(1), 63 (2022)

    Article  Google Scholar 

  17. Nikitina, N., Ivashko, E.: Optimization of the workflow in a BOINC-based Desktop Grid for virtual drug screening. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds.) Supercomputing, RuSCDays 2022. LNCS, vol. 13708, pp. 686–698. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22941-1_50

    Chapter  Google Scholar 

  18. Nikitina, N., Ivashko, E., Tchernykh, A.: Congestion game scheduling implementation for high-throughput virtual drug screening using BOINC-based Desktop Grid. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 480–491. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62932-2_46

    Chapter  Google Scholar 

  19. Nikitina, N., Manzyuk, M., Podlipnik, Č, Jukić, M.: Volunteer computing project SiDock@home for virtual drug screening against SARS-CoV-2. In: Byrski, A., Czachórski, T., Gelenbe, E., Grochla, K., Murayama, Y. (eds.) ANTICOVID 2021. IAICT, vol. 616, pp. 23–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86582-5_3

    Chapter  Google Scholar 

  20. Olğaç, A., Türe, A., Olğaç, S., Möller, S.: Cloud-based high throughput virtual screening in novel drug discovery. In: Kołodziej, J., González-Vélez, H. (eds.) High-Performance Modelling and Simulation for Big Data Applications. LNCS, vol. 11400, pp. 250–278. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16272-6_9

    Chapter  Google Scholar 

  21. Prieto-Martínez, F.D., López-López, E., Juárez-Mercado, K.E., Medina-Franco, J.L.: Computational drug design methods-current and future perspectives. In: Silico Drug Design, pp. 19–44 (2019)

    Google Scholar 

  22. Rosetta@home. https://boinc.bakerlab.org. Accessed 31 Mar 2023

  23. Sabe, V.T., et al.: Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: a review. Eur. J. Med. Chem. 224, 113705 (2021)

    Article  Google Scholar 

  24. Singh, N., Chaput, L., Villoutreix, B.O.: Virtual screening web servers: designing chemical probes and drug candidates in the cyberspace. Brief. Bioinform. 22(2), 1790–1818 (2021)

    Article  Google Scholar 

  25. Sulimov, A.V., Kutov, D.C., Sulimov, V.B.: Supercomputer docking. Supercomput. Front. Innov. 6(3), 26–50 (2019)

    Google Scholar 

  26. Together We Are Powerful - Folding@home. https://foldingathome.org. Accessed 31 Mar 2023

  27. Zhang, B., D’Erasmo, M.P., Murelli, R.P., Gallicchio, E.: Free energy-based virtual screening and optimization of RNase H inhibitors of HIV-1 reverse transcriptase. ACS Omega 1(3), 435–447 (2016)

    Article  Google Scholar 

  28. Zhang, B., Li, H., Yu, K., Jin, Z.: Molecular docking-based computational platform for high-throughput virtual screening. CCF Trans. High Perform. Comput. 1–12 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Nikitina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nikitina, N., Ivashko, E. (2023). HiTViSc: High-Throughput Virtual Screening as a Service. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2023. Lecture Notes in Computer Science, vol 14098. Springer, Cham. https://doi.org/10.1007/978-3-031-41673-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41673-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41672-9

  • Online ISBN: 978-3-031-41673-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics