Skip to main content
Log in

Genetic diversity and population structure in bearded iris cultivars derived from Iris × germanica L. and its related species I. pumila L., I. variegata L., I. pallida Lam.

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Bearded irises are horticulturally important worldwide. Molecular assessment of the germplasms is helpful for their scientific utilization. In this study, forty bearded iris cultivars derived from Iris × germanica L., I. variegata L., I. pumila L. and I. pallida Lam. were selected to characterize their genetic diversity and population structure using AFLP markers. 568 bands were generated, of which 479 (84.3%) were polymorphic. The genetic distances among accessions ranged from 0.20 to 1.09, with an average of 0.52. Six clusters could be obtained by cluster analysis, which was generally in accordance with the color performances of tepals. In PCoA analysis, the first two principal co–ordinates accounting for 17.49% and 13.75% of the total variation revealed closer relationships among I. × germanica, I. variegata and I. pallida, whereas I. pumila was further. Five sub-populations could be detected by structure analysis. The findings provide an insight into the germplasm innovation for bearded irises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arens P, Coops H, Jansen J, Vosman B (1998) Molecular genetic analysis of black poplar (Populus nigra L.) along Dutch rivers. Mol Ecol 7:11–18

    CAS  Google Scholar 

  • Austin C (2005) Irises: A gardener’s encyclopedia. Timber Press, Portland

    Google Scholar 

  • Chang Y-K, Vailleux RE, Iqbal MJ (2009) Analysis of genetic variability among Phalaenopsis species and hybrids using amplified fragment length polymorphism. J Am Soc Hortic Sci 134:58–66

    Google Scholar 

  • Earl DA, von Holdt BM (2012) Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Google Scholar 

  • Gawenda I, Schröder-Lorenz A, Debener T (2011) Marker for ornamental traits in Phalaenopsis orchids: population structure, linkage disequilibiurm and association mapping. Mol Breed 30:305–316

    Google Scholar 

  • Gerura FN, Meressa BH, Martina K, Tesfaye A, Olango TM, Nasser Y (2019) Genetic diversity and population structure of enset (Ensete ventricosum Welw Cheesman) landraces of Gurage zone. Genet Resour Crop Evol, Ethiopia. https://doi.org/10.1007/s10722-019-00825-2

    Book  Google Scholar 

  • Guo J, Zhang J, Sun G, Shi L (2006) Advances of horticultural study of rhizomatous irises. Acta Hortic Sin 33:1149–1156

    Google Scholar 

  • Gupta A, Maurya R, Roy RK, Sawant SV, Yadav HK (2013) AFLP based genetic relationship and population structure analysis of Canna–An ornamental plant. Sci Hortic 154:1–7

    Google Scholar 

  • Hampl V, Pavlicek A, Flegr J (2001) Construction and bootstrap of DNA fingerprinting–based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. Int J Syst Evol Microbiol 51:731–735

    CAS  PubMed  Google Scholar 

  • Hu Y, Ren J, Liu Y, Zhang M, Moe TS, Khan MS, Du Y, Zhang X (2020) Evaluating the genetic relationship of Lilium species/cultivars based on target region amplification polymorphism (TRAP). Genet Resour Crop Evol 67:503–513

    CAS  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    CAS  PubMed  Google Scholar 

  • Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, Van De Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A, Brettschneider R, Bettini P, Buiatti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linacero R, Vazquez A, Karp A (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390

    CAS  Google Scholar 

  • Klie M, Menz I, Linde M, Debener T (2013) Lack of structure in the gene pool of the highly polyploidy ornamental chrysanthemum. Mol Breed 32:339–348

    Google Scholar 

  • Koopman WJM, Wissemann V, De Cock K, Van Hu–ylenbroeck J, De Riek J, Sabatlno GJH, Visser D, Vosman B, Ritz CM, Maes B, Werlemark G, Nybom H, Debener T, Linde M, Smulders MJM (2008) AFLP markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae). Am J Bot 95:353–366

    CAS  PubMed  Google Scholar 

  • Lamote V, Roldán-Ruiz I, Coart E, De Loose M, Van Bockstaele E (2002) A study of genetic variation in Iris pseudacorus populations using amplified fragment length polymorphisms (AFLPs). Aquat Bot 73:19–31

    CAS  Google Scholar 

  • Li T, Guo J, Li Y, Ning H, Sun X, Zheng C (2013) Genetic diversity assessment of chrysanthemum germplasm using conserved DNA–derived polymorphism markers. Sci Hortic 162:271–277

    CAS  Google Scholar 

  • Li P, Zhang F, Chen S, Jiang J, Wang H, Su J, Fang W, Guan Z, Chen F (2016) Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol Genet Genomics 291:1117–1125

    CAS  PubMed  Google Scholar 

  • Lin H, Liu S, Tao Q, Pan M (2012) An analysis of 23 Iris L. germplasm based on AFLP molecular markers. J Wuhan Univ (Nat Sci Ed) 58:332–336

    CAS  Google Scholar 

  • Lyte C, Maynard P, Ellis JR, Service N, Rix M, Grey-Wilson C, Dickson-Cohen VC, Linnegar S, Bowley ME, Blanco-White A, Cohen O, Davis A, Jury S, Innes C, Christiansen H, Mathew B, Killens WR, Waddick JW, King C (1997) A guide to species irises: their identification and cultivation. Cambridge University, Cambridge

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Google Scholar 

  • Nicholas M (1956) The tall bearded iris. The Camelot Press Limited, London

    Google Scholar 

  • Parnikoza IY, Andreev IO, Bublyk OM, Spiridonova KV, Golebiewska J, Kubiak M, Kuczynska A, Mystkowska K, Oledrzynska N, Urasinska B, Slezak-Parnikoza A, Gorniak M, Wojciechowski K, Didukh YP, Kunakh VA (2017) The current state of steppe perennial plants populations: a case study on Iris pumila. Biologia 72:24–35

    Google Scholar 

  • Pradhan SK, Barik SR, Sahoo A, Mohapatra S, Nayak DK, Mahender A, Meher E, Anandan A, Pandit E (2016) Population structure, genetic diversity and molecular marker-trait association analysis for high temperature stress tolerance in rice. PLoS ONE 11(8):e0160027

    PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multi locus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramasamy RK, Ramasamy S, Bindroo BB, Naik VG (2014) Structure plot: a program for drawing elegant STRUCTURE bar plots in user friendly interface. Springer Plus 3:431

    PubMed  PubMed Central  Google Scholar 

  • Ranjan P, Bhat KV, Misra RL, Singh SK, Ranjan JK (2010) Genetic relationships of gladiolus cultivars inferred from fluorescence based AFLP markers. Sci Hortic 123:562–567

    CAS  Google Scholar 

  • Rohlf FJ (2004) NTSYSpc numerical taxonomy and multivariate analysis system, version 2.1, user guide. Setauket, New York

    Google Scholar 

  • Saad L, Mahy G (2009) Molecular and morphological variation of rare endemic oncocyclus irises (Iridaceae) of Lebanon. Bot J Linn Soc 159:123–135

    Google Scholar 

  • Sanderson MJ, Wjciechowski MF (2000) Improve bootstrap confidence limits in large–scale phylogenies, with an example from Neo-Astragalus (Leguminosae). Syst Biol 49:671–685

    CAS  PubMed  Google Scholar 

  • Schenk MF, Thienpont CN, Koopman WJM, Gilissen LJWJ, Smulders MJM (2008) Phylogenetic relationships in Betula (Betulaceae) based on AFLP markers. Tree Genet Genom 4:911–924

    Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    CAS  PubMed  Google Scholar 

  • Tang S, Okashah RA, Cordonnier-Pratt M-M, Pratt LH, Ed Johnson V, Taylor CA, Arnold ML, Knapp SJ (2009) EST and EST–SSR marker resources for Iris. BMC Plant Biol 9:72

    PubMed  PubMed Central  Google Scholar 

  • Volis S, Zhang Y-H, Dorman M, Blecher M (2016) Iris atrofusca genetic and phenotypic variation, the role of habitat–specific selection in this variation structuring, and conservation implications using quasi in situ guidelines. Isr J Plant Sci 63:347–354

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA finerprinting. Nucl Acids Res 23:4407–4414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhuo L (2006) Systematic classification of some species of Iris based on ITS sequences. J Nort Forest Univ 34:56–58

    CAS  Google Scholar 

  • Wang X, Zhang L, Li C, Zhao J (2015) Genetic diversity analysis of 51 Cymbidium goeringii cultivars by AFLP markers. J Plant Genet Res 16:653–658

    Google Scholar 

  • Wilson CA (2017) Sectional relationships in the Eurasian bearded Iris (subgen. Iris) based on phylogenetic analyses of sequence data. Syst Bot 42:392–401

    Google Scholar 

  • Wilson CA, Padiernos J, Sapir Y (2016) The royal irises (Iris subg. Iris sect. Oncocyclus): plastid and low–copy nuclear data contribute to an understanding of their phylogenetic relationships. Taxon 65:35–46

    Google Scholar 

  • Xu YF, Hussain K, Yan XF, Chen XH, Shao MN, Guan P, Qu B (2019) Genetic diversity and relationships among 15 species of Iris based on amplified fragment length polymorphism markers. Appl Ecol Env Res 17:5369–5381

    Google Scholar 

  • Yuan Y, Sun Y, Zhao Y, Liu C, Chen X, Li F, Bao J (2019) Identification of floral scent profiles in bearded irises. Molecules 24:1773

    CAS  PubMed Central  Google Scholar 

  • Zhang Y, Miao M, Yuan H, Yang Y, Liu Q, Huang S (2017) ISSR analysis of 23 cultivars (lines) of Iris germanica. Jiangsu Agric Sci 45:47–50

    Google Scholar 

  • Zhu G, Li D, Guo Z (2007) Genetic diversity and relationship of hybrid Cymbidium based on AFLP marker. Acta Hortic Sin 34:417–424

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Jiangsu Agricultural Science and Technology Innovation Fund [CX(18)2021], the Earmarked Fund for Jiangsu Agricultural Industry Technology System (JATS[2019]421), Yangzhou Modern Agriculture Project (YZ2018035) and the Scientific Research Fund of Institute of Agricultural Sciences for Lixiahe Region in Jiangsu [SJ(17)102].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengtong Li or Jianzhong Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Sun, Y., Liu, C. et al. Genetic diversity and population structure in bearded iris cultivars derived from Iris × germanica L. and its related species I. pumila L., I. variegata L., I. pallida Lam.. Genet Resour Crop Evol 67, 2161–2172 (2020). https://doi.org/10.1007/s10722-020-00969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-00969-6

Keywords

Navigation