Advertisement

Surveys in Geophysics

, Volume 40, Issue 3, pp 361–399 | Cite as

Imaging Spectroscopy for Soil Mapping and Monitoring

  • S. ChabrillatEmail author
  • E. Ben-Dor
  • J. Cierniewski
  • C. Gomez
  • T. Schmid
  • B. van Wesemael
Article
  • 260 Downloads

Abstract

There is a renewed awareness of the finite nature of the world’s soil resources, growing concern about soil security and significant uncertainties about the carrying capacity of the planet. Regular assessments of soil conditions from local through to global scales are requested, and there is a clear demand for accurate, up-to-date and spatially referenced soil information by the modelling scientific community, farmers and land users, and policy- and decision-makers. Soil and imaging spectroscopy, based on visible–near-infrared and shortwave infrared (400–2500 nm) spectral reflectance, has been shown to be a proven method for the quantitative prediction of key soil surface properties. With the upcoming launch of the next generation of hyperspectral satellite sensors in the next years, a high potential to meet the demand for global soil mapping and monitoring is appearing. In this paper, we briefly review the basic concepts of soil spectroscopy with a special attention to the effects of soil roughness on reflectance and then provide a review of state of the art, achievements and perspectives in soil mapping and monitoring based on imaging spectroscopy from air- and spaceborne sensors. Selected application cases are presented for the modelling of soil organic carbon, mineralogical composition, topsoil water content and characterization of soil crust, soil erosion and soil degradation stages based on airborne and simulated spaceborne imaging spectroscopy data. Further, current challenges, gaps and new directions toward enhanced soil properties modelling are presented. Overall, this paper highlights the potential and limitations of multiscale imaging spectroscopy nowadays for soil mapping and monitoring, and capabilities and requirements of upcoming spaceborne sensors as support for a more informed and sustainable use of our world’s soil resources.

Keywords

Soil mapping and monitoring Imaging spectroscopy Hyperspectral Soil organic carbon Soil mineralogical composition Surface roughness Soil moisture Vegetation cover Spaceborne instruments 

Notes

Acknowledgements

This paper is an outcome of a Workshop on requirements, capabilities and directions in spaceborne imaging spectroscopy held at the International Space Science Institute (ISSI) in Bern, Switzerland, in November 2016. The support of ISSI is gratefully acknowledged. The EnMAP science preparation program and EnMAP coordination team are gratefully acknowledged without which the ISSI Workshop would not have taken place.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adeline K, Gomez C, Gorretta N, Roger JM (2017) Predictive ability of soil properties to spectral degradation from laboratory Vis–NIR spectroscopy data. Geoderma 288:143–153Google Scholar
  2. Agassi M, Shainberg I, Morin J (1981) Effect of electrolyte concentration and soil sodicity on infiltration rate and crust formation. Soil Sci Soc Am J 45(5):848–851Google Scholar
  3. Agassi M, Morin J, Shainberg I (1985) Effect of raindrop impact energy and water salinity on infiltration rates of sodic soils. Soil Sci Soc Am J 49:186–190Google Scholar
  4. Aldana-Jague E, Heckrath G, Macdonald A, Van Wesemael B, Van Oost K (2016) UAV-based soil carbon mapping using VIS–NIR (480–1000 nm) multi-spectral imaging: potential and limitations. Geoderma 275(1):55–66Google Scholar
  5. Alonso M, Rodríguez-Caballero E, Chamizo S, Escribano P, Cantón Y (2014) Evaluación de los diferentes índices para cartografiar biocostras a partir de información espectral. Rev Esp Teledetec 42:63–82Google Scholar
  6. Arrouays D, Lagacherie P, Hartemink AE (2017) Digital soil mapping across the globe. Geoderma Reg 9:1–4Google Scholar
  7. Bablet A, Jacquemoud S, Viallefond F, Fabre S, Briottet X (2017) Modeling bare soil reflectance in the solar domain as a function of water content and surface roughness. In: Abstract 10th EARSeL SIG Imaging Spectroscopy Workshop, 19–21 April 2017, Zurich, SwitzerlandGoogle Scholar
  8. Bablet A, Vu PVH, Jacquemoud S, Viallefont-Robinet F, Fabre S, Briottet X, Sadeghid M, Whiting ML, Baret F, Tian J (2018) MARMIT: a multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400–2500 nm). Remote Sens Environ 217:1–17Google Scholar
  9. Bach H, Mauser W (1994) Modelling and model verification of the spectral reflectance of soils under varying moisture conditions. In: Proceedings IGARSS 94. ‘Surface and atmospheric remote sensing: technologies, data analysis and interpretation’, Pasadena, California, 8–12 August 1994, IEEE international. IEEE, Piscataway, NJ, pp 2354–2356Google Scholar
  10. Bartholomeus H, Epema G, Schaepman M (2007) Determining iron content in Mediterranean soils in partly vegetated regions, using spectral reflectance and imaging spectroscopy. Int J Appl Earth Obs Geoinf 9:194–203Google Scholar
  11. Bartholomeus H, Kooistraa L, Stevens A, van Leeuwen M, van Wesemael B, Ben-Dor E, Tychon B (2011) Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy. Int J Appl Earth Obs Geoinf 13:81–88Google Scholar
  12. Baumgardner MF, Silva LF, Biehl LL, Stoner ER (1985) Reflectance properties of soils. Adv Agron 38:1–44Google Scholar
  13. Ben-Dor E, Banin A (1995a) Near infrared analysis (NIRA) as a method to simultaneously evaluate spectral featureless constituents in soils. Soil Sci 159(4):259–270Google Scholar
  14. Ben-Dor E, Banin A (1995b) Near infrared analysis (NIRA) as a rapid method to simultaneously evaluate several soil properties. Soil Sci Soc Am J 59:364–372Google Scholar
  15. Ben-Dor E, Inbar Y, Chen Y (1997) The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500) during a controlled decomposition process. Remote Sens Environ 61:1–15Google Scholar
  16. Ben-Dor E, Irons JR, Epema GF (1999) Remote sensing of the earth sciences: manual of remote sensing. Soil Reflectance 3:111Google Scholar
  17. Ben-Dor E, Patkin K, Banin A, Karnieli A (2002) Mapping of several soil properties using DAIS-7915 hyperspectral scanner data: a case study over clayey soils in Israel. Int J Remote Sens 23:1043–1062Google Scholar
  18. Ben-Dor E, Goldlshleger N, Benyamini Y, Agassi M, Blumberg DG (2003) The spectral reflectance properties of soil structural crusts in the 1.2 to 2.5 µm spectral region. Soil Sci Soc Am J 67(1):289–299Google Scholar
  19. Ben-Dor E, Goldshalager N, Braun O, Kindel B, Goetz AFH, Bonfil D, Agassi M, Margalit N, Binayminy Y, Karnieli A (2004) Monitoring of infiltration rate in semiarid soils using airborne hyperspectral technology. Int J Remote Sens 25:1–18Google Scholar
  20. Ben-Dor E, Levin TN, Singer A, Karnieli A, Braun O, Kidron GJ (2006) Quantitative mapping of the soil rubification process on sand dunes using an airborne hyperspectral sensor. Geoderma 131:1–21Google Scholar
  21. Ben-Dor E, Taylor GR, Hill J, Demattê JAM, Whiting ML, Chabrillat S, Sommer S (2008) Imaging spectrometry for soil applications. Adv Agron J 97:321–392Google Scholar
  22. Ben-Dor E, Chabrillat S, Demattê JAM, Taylor GR, Hill J, Whiting ML, Sommer S (2009) Using imaging spectroscopy to study soil properties. Remote Sens Environ 113:S38–S55Google Scholar
  23. Ben-Dor E, Kafri A, Varacalli G (2014) SHALOM: an Italian–Israeli hyperspectral orbital mission—update. In: International geoscience and remote sensing symposium, Quebec, Canada, 13–18 July 2014Google Scholar
  24. Ben-Dor E, Granot A, Notesco G (2017) A simple apparatus to measure soil spectral information in the field under stable conditions. Geoderma 306:73–80Google Scholar
  25. Ben-Dor E, Chabrillat S, Demattê JAM (2018) Characterization of soil properties using reflectance spectroscopy. In: Thenkabail PS, Lyon JG, Huete A (eds) Hyperspectral remote sensing of vegetation, 2nd edn. Four volume set—volume I: fundamentals, sensor systems, spectral libraries, and data mining for vegetation. CRC Press, Boca Raton, pp 187–247. ISBN 978-1-138-05854-5Google Scholar
  26. Benyamini Y, Unger PW (1984) Crust development under simulated rainfall on four soils. In: Agronomy abstracts. ASA, Madison, WI, pp 243–244Google Scholar
  27. Bishop JL, Pieters CM, Edwards JO (1994) Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays Clay Miner 42:702–716Google Scholar
  28. Blasch G, Spengler D, Hohmann C, Neumann C, Itzerott I, Kaufmann H (2015) Multitemporal soil pattern analysis with multispectral remote sensing data at the field-scale. Comput Electron Agric 113:1–13Google Scholar
  29. Bogrekci I, Lee WS (2006) Effects of soil moisture content on absorbance spectra of sandy soils in sensing phosphorus concentrations using UV–VIS–NIR spectroscopy. Trans ASABE 49:1175–1180.  https://doi.org/10.13031/2013.21717 Google Scholar
  30. Boiffin J (1986) Stages and time-depedency of soil crusting in situ. In: Callebaut F, Gabriels D, De Boodt M (eds) Assessment of soil surface sealing and crusting. Flanders Research Center for Soil Erosion and Soil Conservation, Ghent, pp 91–98Google Scholar
  31. Bowers S, Hanks RJ (1965) Reflectance of radiant energy from soils. Soil Sci 100:130–138Google Scholar
  32. Brennan B, Bandeen WR (1970) Anisotropic reflectance characteristics of natural Earth surfaces. Appl Opt 9:405–412Google Scholar
  33. Briottet X et al (2017) European Hyperspectral Explorer: HYPEX-2—a new space mission for vegetation biodiversity, bare continental surfaces, coastal zones and urban area ecosystems. In: Abstract 10th EARSeL SIG imaging spectroscopy workshop, 19–21 April 2017, Zurich, SwitzerlandGoogle Scholar
  34. Brodsky L, Klement A, Penizek V, Kodesova R, Boruvka L (2011) Building soil spectral library of the Czech soils for quantitative digital soil mapping. Soil Water Res 6:165–172Google Scholar
  35. Brook A, Ben-Dor E (2014) Practical example of the supervised vicarious calibration (SVC) method: VALCALHYP airborne hyper spectra campaigns under EUFAR. In: EaRSeL eProceedings, no 2, pp 38–48Google Scholar
  36. Brook A, Ben-Dor E (2015) Supervised vicarious calibration (SVC) of multi-source hyperspectral remote-sensing data. Remote Sens 7:6196–6223Google Scholar
  37. Bryant R, Thoma D, Moran S, Holifield C, Goodrich D, Keefer T, Paige G, Williams D, Skirvin S (2003) Evaluation of hyperspectral, infrared temperature and radar measurements for monitoring surface soil moisture. In: Proceedings of the first interagency conference on research in the watersheds, Benson (USA), pp 528–533Google Scholar
  38. Carmon N, Ben-Dor E (2017) An advanced analytical approach for spectral-based modelling of soil properties. Int J Emerg Technol Adv Eng 7:90–97Google Scholar
  39. Castaldi F, Palombo A, Pascucci S, Pignatti S, Santini F, Casa R (2015) Reducing the influence of soil moisture on the estimation of clay from hyperspectral data: a case study using simulated PRISMA data. Remote Sens 7:15561–15582.  https://doi.org/10.3390/rs71115561 Google Scholar
  40. Castaldi F, Palombo A, Santini F, Pascucci S, Pignatti S, Casa R (2016) Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens Environ 179:54–65Google Scholar
  41. Castaldi F, Chabrillat S, Jones A, Vreys K, Bomans B, van Wesemael B (2018a) Soil organic carbon estimation in croplands by hyperspectral remote APEX Data using the LUCAS topsoil database. Remote Sens 10:153.  https://doi.org/10.3390/rs10020153 Google Scholar
  42. Castaldi F, Chabrillat S, Chartin C, Genot V, Jones AR, van Wesemael B (2018b) Using LUCAS topsoil database to estimate soil organic carbon content in croplands sampled in Belgium and Luxembourg. Eur J Soil Sci 69(4):592–603Google Scholar
  43. Castaldi F, Chabrillat S, van Wesemael B (2019) Sampling strategies for soil property mapping using multispectral Sentinel-2 and hyperspectral EnMAP satellite data. Remote Sens (in press)Google Scholar
  44. Chabrillat S (2006) Land degradation indicators: spectral indices. Ann Arid Zone Spec Issue Land Special Assess 45(3–4):331–354Google Scholar
  45. Chabrillat S, Goetz AFH, Krosley L, Olsen HW (2002) Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution. Remote Sens Environ 82:431–445Google Scholar
  46. Chabrillat S, Eisele A, Guillaso S, Rogaß C, Ben-Dor E, Kaufmann H (2011) HYSOMA: an easy-to-use software interface for soil mapping applications of hyperspectral imagery. In: Proceedings 7th EARSeL SIG imaging spectroscopy workshop, Edinburgh, ScotlandGoogle Scholar
  47. Chabrillat S, Whiting ML, Guillaso S, Eisele A, Haubrock SN, Kaufmann H (2012) Quantitative mapping of surface soil moisture with hyperspectral imagery using the HYSOMA interface. In: Abstract 2012 IEEE international geoscience and remote sensing symposium, IGARSS 2012, Muenchen, GermanyGoogle Scholar
  48. Chabrillat S, Foerster S, Steinberg A, Segl K (2014) Prediction of common surface soil properties using airborne and simulated EnMAP hyperspectral images: impact of soil algorithm and sensor characteristic. In: Proceedings 2014 IEEE international geoscience and remote sensing symposium, IGARSS 2014, Québec city, QC, Canada, pp 2914–2917Google Scholar
  49. Chabrillat S, Hanegraaf M, Sommer R, van den Bosch R, Montanarella L, van Wesemael B, Schwilch G, Harthoorn J, Skalsky R, Braslow J, Mills J, Verzandvoort S, Obersteiner M (2015) Soil and land information: how to support decision making? Rapporteurs report, Global Soil Week 2015, Germany, 20–23 April 2015Google Scholar
  50. Chabrillat S, Guillaso S, Rabe A, Foerster S, Guanter L (2016) From HYSOMA to ENSOMAP—a new open source tool for quantitative soil properties mapping based on hyperspectral imagery from airborne to spaceborne applications. General Assembly European Geosciences Union, Vienna, Austria, 2016, geophysical research abstracts, vol 18, EGU2016-14697Google Scholar
  51. Chamizo S, Stevens A, Cantón Y, Miralles I, Domingo F, Van Wesemael B (2012) Discriminating soil crust type, development stage and degree of disturbance in semiarid environments from their spectral characteristics. Eur J Soil Sci 63:42–53Google Scholar
  52. Chang DH, Islam S (2000) Estimation of soil physical properties using remote sensing and artificial neural network. Remote Sens Environ 74(3):534–544Google Scholar
  53. Chang CW, Laird DA, Mausbach MJ, Hurburgh CR (2001) Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Sci Soc Am J 65:480–490Google Scholar
  54. Ciani A, Goss KU, Schwarzenbach RP (2005) Light penetration in soil and particulate minerals. Eur J Soil Sci 56(5):561–574Google Scholar
  55. Cierniewski J (1987) A model for soil surface roughness influence on the spectral response of bare soils in the visible and near-infrared range. Remote Sens Environ 23:97–115Google Scholar
  56. Cierniewski J (2012) Satellite observation of bare soils for their average diurnal albedo approximation. In: Ist international conference on sensor networks, 24–26 February, 2012, Rome, Italy, pp 1–6Google Scholar
  57. Cierniewski J, Courault D (1993) Bidirectional reflectance of bare soil surface in the visible and near-infrared range. Remote Sens Rev 7:321–339Google Scholar
  58. Cierniewski J, Guliński M (2010) Furrow microrelief influence on the directional hyperspectral reflectance of soil at various illumination and observation conditions. IEEE Trans Geosci Remote Sens 48(11):4143–4148Google Scholar
  59. Cierniewski J, Gdala T, Karnieli A (2004) A hemispherical–directional reflectance model as a tool for understanding image distinctions between cultivated and uncultivated bare surfaces. Remote Sens Environ 90:505–552Google Scholar
  60. Cierniewski J, Karnieli A, Hermann I, Królewicz S, Kuśnierek K (2010) Soil surface illumination at micro-relief scale and soil BRDF data collected by a hyperspectral camera. Int J Remote Sens 31:2151–2157Google Scholar
  61. Cierniewski J, Karnieli A, Kuśnierek K, Herrmann I (2013) Approximating the average daily surface albedo with respect to soil roughness and latitude. Int J Remote Sens 34(9–10):3416–3424Google Scholar
  62. Cierniewski J, Kaźmierowski C, Królewicz S (2015) Evaluation of the effects of surface roughness on the relationship between soil BRF data and broadband albedo. IEEE J Sel Top Appl Earth Obs Remote Sens 8(4):1528–1533Google Scholar
  63. Cipra JE, Baumgardner MF, Stoner ER, MacDonald RB (1971) Measuring radiance characteristics of soil with a field spectroradiometer. Soil Sci Soc Am J 35:1014–1017Google Scholar
  64. Corbane C, Raclot D, Jacob F, Albergel J, Andrieux P (2008) Remote sensing of soil surface characteristics from a multiscale classification approach. CATENA 75:308–318Google Scholar
  65. Coulson KL, Reynolds DW (1971) The spectral reflectance of natural surfaces. J Appl Meteorol 10:1285–1295Google Scholar
  66. Croft H, Anderson K, Kuhn NJ (2012) Reflectance anisotropy for measuring soil surface roughness of multiple soil types. CATENA 93:87–96Google Scholar
  67. Croft H, Anderson K, Brazier ER, Kuhn NJ (2013) Modeling fine-scale soil surface structure using geostatistics. Water Resour Res 49:1858–1870Google Scholar
  68. Croft H, Anderson K, Kuhn NJ (2014) Evaluating the influence of surface soil moisture and soil surface roughness on optical directional reflectance factors. Eur J Soil Sci 65:605–612.  https://doi.org/10.1111/ejss.12142 Google Scholar
  69. Dalal RC, Henry RJ (1986) Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectroscopy. Soil Sci Soc Am J 50:120–123Google Scholar
  70. De Jong SM (1992) The analysis of spectroscopical data to map soil and types and soil crust of Mediterranean eroded soil. Soil Technol 5:199–211Google Scholar
  71. Deering DW, Eck TF, Otterman J (1990) Bidirectional reflectance of selected desert surfaces and their three-parameter soil characterization. Agric For Meteorol 52:71–90Google Scholar
  72. Dehaan R, Taylor GR (2003) Image-derived spectral endmembers as indicators of salinization. Int J Remote Sens 24:775–794Google Scholar
  73. Demattê JA, Campos RC, Alves MC, Fiorio PR, Nanni MR (2004) Visible–NIR reflectance: a new approach on soil evaluation. Geoderma 121(1):95–112Google Scholar
  74. Demattê JAM, Morgan CLS, Chabrillat S, Rizzo R, Franceschini MHD, FdaS Terra, Vasques GM, Wetterlind J (2015) Spectral sensing from ground to space in soil science: state of the art, applications, potential and perspectives. In: Thenkabail PS (ed) Remote sensing handbook—three volume set: land resources monitoring, modeling, and mapping with remote sensing. CRC Press, Boca Raton, pp 661–732. ISBN-10: 1482217953Google Scholar
  75. Demattê JAM, Fongaro CT, Rizzo R, Safanelli JL (2018) Geospatial soil sensing system (GEOS3): a powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens Environ 212:161–175Google Scholar
  76. Demetriades-Shah TH, Steven MD, Clark JA (1990) High resolution derivative spectra in remote sensing. Remote Sens Environ 33:55–64Google Scholar
  77. Denis A, Stevens A, van Wesemael B, Udelhoven T, Tychon B (2014) Soil organic carbon assessment by field and airborne spectrometry in bare croplands: accounting for soil surface roughness. Geoderma 226–227:94–102.  https://doi.org/10.1016/j.geoderma.2014.02.015 Google Scholar
  78. Diek S, Schaepman ME, de Jong R (2016) Creating multi-temporal composites of airborne imaging spectroscopy data in support of digital soil mapping. Remote Sens 8:906–934.  https://doi.org/10.3390/rs8110906 Google Scholar
  79. Diek S, Schaepmann M, de Jong R (2017a) Correcting airborne imaging spectroscopy data for soil moisture and soil surface roughness effects in support of digital soil mapping. In: Abstract 10th EARSeL SIG imaging spectroscopy workshop, 19–21 April 2017, Zurich, SwitzerlandGoogle Scholar
  80. Diek S, Fornallaz F, Schaepman ME, de Jong R (2017b) Barest pixel composite for agricultural area using time series of Landsat data. Remote Sens 9(12):1245.  https://doi.org/10.3390/rs9121245 Google Scholar
  81. Diek S, Chabrillat S, Nocita M, Schaepman ME, de Jong R (2019) Minimizing soil moisture variations in multi-temporal airborne imaging spectrometer data for digital soil mapping. Geoderma 337:607–621Google Scholar
  82. Eisele A, Lau IC, Hewson R, Carter D, Wheaton B, Ong C, Cudahy TJ, Chabrillat S, Kaufmann H (2012) Applicability of the thermal infrared spectral region for the prediction of soil properties across semi-arid agricultural landscapes. Remote Sens 4(11):3265–3286.  https://doi.org/10.3390/rs4113265 Google Scholar
  83. Eisele A, Chabrillat S, Hecker C, Hewson R, Lau IC, Rogass C, Segl K, Cudahy TJ, Udelhoven T, Hostert P, Kaufmann H (2015) Advantages using the longwave infrared (LWIR) to detect and quantify semi-arid soil properties. Remote Sens Environ 163:296–311.  https://doi.org/10.1016/j.rse.2015.04.001 Google Scholar
  84. Escribano P, Schmid T, Chabrillat S, Rodríguez-Caballero E, García M (2017) Optical remote sensing for soil mapping and monitoring. In: Pereira P, Brevik E, Muñoz-Rojas M, Miller B (eds) Soil mapping and process modelling for sustainable land use management. Elsevier, Amsterdam, pp 87–125. ISBN 978-0-12-805200-6Google Scholar
  85. Eshel G, Levey G (2004) Spectral reflectance properties of crusted soils under solar illumination. Soil Sci Soc Am J 66:1982–1991Google Scholar
  86. Eswaran H, Lal R, Reich PF (2001) Land degradation: an overview. In: Bridges EM, Penning de Vries FWT, Oldeman LR, Sombatpanit S, Scherr SJ (eds) Response to land degradation. Science Publishers, Inc., Enfield, NH, pp 20–35Google Scholar
  87. European Commission (EC) (2006) Soil protection: the long story behind the strategy. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  88. Fabre S, Briottet X, Lesaignoux A (2015) Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4–2.5 µm domain. Sensors 15:3262–3281Google Scholar
  89. FAO and ITPS (2015) Status of the world’s soil resources (SWSR): main report. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  90. FAO/IIASA/ISRIC/ISS-CAS/JRC (2012) Harmonized World Soil Database (version 1.2). FAO, RomeGoogle Scholar
  91. Folkman M, Pearlman J, Liao L, Jarecke P (2001) EO1/Hyperion hyperspectral imager design, development, characterization and prediction. In: Smith WL, Yasuoka Y (eds) Hyperspectral remote sensing of the land and atmosphere. SPIE proceeding, vol 4151, pp 40–51Google Scholar
  92. Ge Y, Morgan CLS, Ackerson JP (2014) VisNIR spectra of dried ground soils predict properties of soils scanned moist and intact. Geoderma 221–222:61–69.  https://doi.org/10.1016/j.geoderma.2014.01.011 Google Scholar
  93. Gerighausen H, Menz G, Kaufmann H (2012) Spatially explicit estimation of clay and organic carbon content in agricultural soils using multi-annual imaging spectroscopy data. Appl Environ Soil Sci.  https://doi.org/10.1155/2012/868090 Google Scholar
  94. Gholizadeh A, Borůvka L, Saberioon MM, Kozák J, Vašát R, Němeček K (2015) Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features. Soil Water Res 10(4):218–227Google Scholar
  95. Gilley JE, Kottwitz ER (1995) Random roughness assessment by the pin and chain method. Appl Eng Agric 12(1):39–43Google Scholar
  96. Gilliot JM, Vaudour E, Michelin J (2017) Soil surface roughness measurement: a new fully automatic photogrammetric approach applied to agricultural bare fields. Comput Electron Agric 134:63–78Google Scholar
  97. Goetz AFH, Vane G, Solomon JE, Rock BN (1985) Imaging spectrometry for Earth remote sensing. Science 228:1147–1153Google Scholar
  98. Goldshleger N, Ben-Dor E, Benyamini Y, Blumberg D, Agassi M (2001) The spectral reflectance of soil’s structural crust in the SWIR region 1.2–2.5 µm. Terra-Nova 13(1):12–17Google Scholar
  99. Goldshleger N, Ben-Dor E, Benyamini Y, Blumberg DG, Agassi M (2002) Soil crusting and infiltration process as monitored by soil reflectance spectroscopy in the SWIR Region. Int J Remote Sens 23(19):3909–3920Google Scholar
  100. Goldshleger NE, Ben-Dor E, Benyamini Y, Agassi M (2004) Soil reflectance as a tool for assessing physical crust arrangement of four typical soils in Israel. Soil Sci 169:677–687Google Scholar
  101. Goldshlager N, Ben-Dor E, Chudnovsky A, Agassi M (2010) Soil reflectance as a generic tool for assessing infiltration rate induced by structural crust for heterogeneous soils. Eur J Soil Sci 60:1038–1951Google Scholar
  102. Gomez C, ViscarraRossel RA, McBratney AB (2008a) Soil organic carbon prediction by hyperspectral remote sensing and field VIS–NIR spectroscopy: an Australian case study. Geoderma 146:403–411Google Scholar
  103. Gomez C, Lagacherie P, Coulouma G (2008b) Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma 148:141–148Google Scholar
  104. Gomez C, Lagacherie P, Coulouma G (2012a) Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data. Geoderma 189–190:176–185Google Scholar
  105. Gomez C, Lagacherie P, Bacha S (2012b) Using Vis–NIR hyperspectral data to map topsoil properties over bare soils in the Cap Bon region, Tunisia. In: Digital soil assessments and beyond—proceedings of the fifth global workshop on digital soil mapping, pp 387–392Google Scholar
  106. Gomez C, Drost APA, Roger JM (2015a) Analysis of the uncertainties affecting predictions of clay contents from VNIR/SWIR hyperspectral data. Remote Sens Environ 156:58–70Google Scholar
  107. Gomez C, Oltra Carrio R, Lagacherie P, Bacha S, Briottet X (2015b) Sensitivity of soil property prediction obtained from hyperspectral Vis–NIR imagery to atmospheric effects and degradation in image spatial resolutions. Remote Sens Environ 164:1–15Google Scholar
  108. Gomez C, Gholizadeh A, Borůvka L, Lagacherie P (2016) Using legacy data for predicting soil surface clay content from VNIR/SWIR hyperspectral airborne images. Geoderma 276:84–92Google Scholar
  109. Green R (2018) Global VSWIR imaging spectroscopy and the 2017 Decadal Survey. In: Proceedings of IGARSS 2018, IEEE international geoscience and remote sensing symposium, Valencia, Spain, 22–27 July 2018Google Scholar
  110. Grunwald S, Thompson JA, Boettinger JL (2011) Digital soil mapping and modeling at continental scales: finding solutions for global issues. Soil Sci Soc Am J 75:1201Google Scholar
  111. Guanter L, Kaufmann H, Segl K, Förster S, Rogass C, Chabrillat S, Küster T, Hollstein A et al (2015) The EnMAP spaceborne imaging spectroscopy mission for Earth observation. Remote Sens 7(7):8830–8857Google Scholar
  112. Hapke BW (1981) Bidirectional reflectance spectroscopy I. Theory. J Geophys Res 86:3039–3054Google Scholar
  113. Hartemink AE (2008) Soils are back on the global agenda. Soil Use Manag 24(4):327–330Google Scholar
  114. Hartemink AE, McBratney AB (2008) A soil science renaissance. Geoderma 148:123–129Google Scholar
  115. Haubrock S-N, Chabrillat S, Lemmnitz C, Kaufmann H (2008a) Surface soil moisture quantification models from reflectance data under field conditions. Int J Remote Sens 29(1):3–29Google Scholar
  116. Haubrock S-N, Chabrillat S, Kuhnert M, Hostert P, Kaufmann H (2008b) Surface soil moisture quantification and validation based on hyperspectral data and field measurements. J Appl Remote Sens 2:023552Google Scholar
  117. Heng BCP, Chandler JH, Armstrong A (2010) Applying close range digital photogrammetry in soil erosion studies. Photogramm Rec 25(131):240–265Google Scholar
  118. Hill J, Schütt B (2000) Mapping complex patterns of erosion and stability in dry Mediterranean ecosystems. Remote Sens Environ 74:557–569Google Scholar
  119. Hill J, Udelhoven T, Schütt B, Yair A (1999) Differentiating biological soil crusts in a sandy arid eco-system based on multi- and hyperspectral remote sensing data. In: Schaepmann M, Schläpfer D, Itten K (Eds) 1st EARSEL workshop on imaging spectroscopy. Proceedings of the EARSEL workshop, Zürich, 6–8 October 1998. EARSEL Secretariat, Paris, pp 427–436Google Scholar
  120. Hook SJ, Hulley G, Cawse-Nicholson K (2017) HyTES, ECOSTRESS and HyspIRI—imaging spectroscopy and broad band imaging in the thermal infrared. In: Abstract 10th EARSeL SIG imaging spectroscopy workshop, 19–21 April 2017, Zurich, SwitzerlandGoogle Scholar
  121. Hummel JW, Sudduth KA, Hollinger SE (2001) Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Comput Electron Agric 32:149–165Google Scholar
  122. Idso SB, Jackson RD, Reginato RJ, Kimball BA, Nakayama FS (1975) The dependence of bare soil albedo on soil water content. J Appl Meteorol 14:109–113Google Scholar
  123. Jackson RD, Moran S, Slater PN, Biggar SF (1987) Field calibration of reflectance panels. Remote Sens Environ 22:145–158Google Scholar
  124. Janik LJ, Merry RH, Skjemstad JO (1998) Can mid infrared diffuse reflectance analysis replace soil extractions? Anim Prod Sci 38(7):681–696Google Scholar
  125. Ji W, Viscarra Rossel RA, Shi Z (2015) Accounting for the effects of water and the environment on proximally sensed vis–NIR soil spectra and their calibrations. Eur J Soil Sci 66:555–565.  https://doi.org/10.1111/ejss.12239 Google Scholar
  126. JRC, Jones A, Panagos P et al (2012) The state of soil in Europe: a contribution of the JRC to the European environments agency’s environment state and outlook report—SOER 2010, JRC68418Google Scholar
  127. Karnieli A, Kidron G, Ghassler C, Ben-Dor E (1999) Spectral characteristics of cyanobacteria soil crust in the visible near infrared and short wave infrared (400–2,500 nm) in semiarid environment. Int J Remote Sens 69:67–77Google Scholar
  128. Knadel M, Deng F, Thomsen A, Greve HM (2012) Development of a Danish national Vis–NIR soil spectral library for soil organic carbon determination. In: Digital soil assessments and beyond: proceedings of the 5th global workshop on digital soil mapping 2012, Sydney, Australia, vol 43. CRC Press, Boca RatonGoogle Scholar
  129. Kopačková V, Ben-Dor E, Carmon N, Notesco G (2017) Modelling diverse soil attributes with visible to longwave infrared spectroscopy using PLSR employed by an automatic modelling engine. Remote Sens 9(2):134Google Scholar
  130. Kriebel KT (1976) On the variability of the reflected radiation field due to differing distributions of the irradiation. Remote Sens Environ 4:257–264Google Scholar
  131. Kuester T, Spengler D, Barczi J-F, Segl K, Hostert P, Kaufmann H (2014) Simulation of multitemporal and hyperspectral vegetation canopy bidirectional reflectance using detailed virtual 3-D canopy models. IEEE Trans Geosci Remote Sens 52(4):2096–2108Google Scholar
  132. Kuester T, Foerster S, Chabrillat S, Spengler D, Guanter L (2017) Assessing the influence of variable fractional vegetation cover on soil spectral features using simulated canopy reflectance modelling. In: Abstract 10th EARSeL SIG Imaging spectroscopy workshop, 19–21 April 2017, Zurich, SwitzerlandGoogle Scholar
  133. Lagacherie P, Baret F, Feret JB, Netto JM, Robbez-Masson JM (2008) Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sens Environ 112:825–835Google Scholar
  134. Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7(5):5875–5895Google Scholar
  135. Lee CM, Cable ML, Hook SJ, Green RO, Ustin SL, Mandl DJ, Middleton EM (2015) An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities. Remote Sens Environ 167:6–19Google Scholar
  136. Lefèvre-Fonollosa MJ, Bajouk T, Briottet X, Carrère V, Delacourt, C, Feret JB, Gastellu-Etchegorry JP, Gomez C, Jacquemoud S, Le Dantec N, Marion R, Petit T, Weber C (2016) Preparing the future: the HYPXIM mission. In: 36th EARSeL symposium 2016, Bonn, Germany, 20–24 June 2016Google Scholar
  137. Lekner J, Dorf MC (1988) Why some things are darker when wet. Appl Opt 27:1278–1280Google Scholar
  138. Li Y, Liu Y, Wu S, Wang C, Xu A, Pan X (2017) Hyperspectral estimation of wheat biomass after alleviating of soil effects on spectra by non-negative matrix factorization. Eur J Agron 84:58–66Google Scholar
  139. Liang S, Townshend JR (1996) A modified Hapke model for soil bidirectional reflectance. Remote Sens Environ 55(1):1–10Google Scholar
  140. Liu W, Baret F, Gu XF, Zhang B, Tong Q, Zheng L (2003) Evaluation of methods for soil surface moisture estimation from reflectance data. Int J Rem Sens 24(10):2069–2083Google Scholar
  141. Liu Y, Pan X, Wang C, Li Y, Shi R (2015) Predicting soil salinity with VisNIR spectra after removing the effects of soil moisture using external parameter orthogonalization. PLoS One.  https://doi.org/10.1371/journal.pone.0140688 Google Scholar
  142. Lobell DB, Asner GP (2002) Moisture effects on soil reflectance. Soil Sci Soc Am J 66:722–727Google Scholar
  143. Loizzo R, Guarini R, Longo F, Scopa T, Formaro R, Facchinetti C, Varavalli G (2018), PRISMA: the Italian hyperspectral mission. In: Proceedings of IGARSS 2018, IEEE international geoscience and remote sensing symposium, Valencia, Spain, 22–27 July 2018Google Scholar
  144. Lu P, Wang L, Niu Z, Li L, Zhang W (2013) Prediction of soil properties using laboratory VIS–NIR spectroscopy and Hyperion imagery. J Geochem Explor 132:26–33Google Scholar
  145. Malley DF, Martin P, Ben-Dor E (2004) Application in analysis of soils. Chapter 26. In: Craig R, Windham R, Workman J (eds) Near infrared spectroscopy in agriculture, vol 44. A three Societies Monograph. ASA, SSSA, CSSA, Madison, pp 729–784Google Scholar
  146. Marzahn P, Rieke-Zapp D, Ludwig L (2012) Assessment of soil surface roughness statistics for microwave remote sensing applications using a simple photogrammetric acquisition system. ISPRS J Photogramm Remote Sens 72:80–89Google Scholar
  147. Matsunaga T, Iwasaki A, Tsuchida S, Iwao K, Tanii, J, Kashimura O, Nakamura R, Yamamoto H, Kato S, Obata K, Mouri K, Tachikawa, T (2018) HISUI status toward FY2019 launch. In: Proceedings of IGARSS 2018, IEEE international geoscience and remote sensing symposium, Valencia, Spain, 22–27 July 2018Google Scholar
  148. Matthias AD, Fimbres A, Sano EE, Post DF, Accily L, Batchily AK, Ferreira LG (2000) Surface roughness effects on soil albedo. SSSA J 63(3):1035–1041Google Scholar
  149. McIntyre DS (1958) Permeability measurements of soil crusts formed by raindrop impact. Soil Sci 85(4):185–189Google Scholar
  150. Meine C, Knight RL (eds) (1999) The essential Aldo Leopold: quotations and commentaries. University of Wisconsin Press, MadisonGoogle Scholar
  151. Milton EJ, Webb JP (1987) Ground radiometry and airborne multispectral survey of bare soils. Int J Remote Sens 18:3–14Google Scholar
  152. Minasny B, McBratney AB (2006) A conditioned Latin hypercube method for sampling in the presence of ancillary information. Comput Geosci 32(9):1378–1388Google Scholar
  153. Minasny B, McBratney AB, Bellon-Maurel V, Roger J-M, Gobrecht A, Ferrand L, Joalland S, Minasny B, Bellon-Maurel V, Gobrecht A, Roger J-M, Ferrand L, Joalland S (2011) Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma 167–168:118–124.  https://doi.org/10.1016/j.geoderma.2011.09.008 Google Scholar
  154. Moreno RG, Requejo AS, Alonso AMT, Barrington S, Alvarez MCD (2008) Shadow analysis: a method for measuring soil surface roughness. Geoderma 146:201–208Google Scholar
  155. Muller E, Decamps H (2000) Modeling soil moisture-reflectance. Remote Sens Environ 76:173–180Google Scholar
  156. Nanni MR, Demattê JAM (2006) Spectral reflectance methodology in comparison to traditional soil analysis. Soil Sci Soc Am J 70:393–407Google Scholar
  157. Nocita M, Stevens A, Toth G, Panagos P, van Wesemael B, Montanarella L (2014) Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biol Biochem 68:337–347Google Scholar
  158. Oldeman L, Hakkeling R, Sombroek W (1990) World map of the status of soil degradation, an explanatory note. International Soil Reference and Information Center, WageningenGoogle Scholar
  159. Ouerghemmi W, Gomez C, Naceur S, Lagacherie P (2011) Applying blind source separation on hyperspectral data for clay content estimation over partially vegetated surfaces. Geoderma 163(3–4):227–237Google Scholar
  160. Ouerghemmi W, Gomez C, Nacer S, Lagacherie P (2016) Semi-blind source separation for estimation of clay content over semi-vegetated areas, from VNIR/SWIR hyperspectral airborne data. Remote Sens Environ 181:251–263Google Scholar
  161. Palmer JM (1982) Field standards of reflectance. Photogramm Eng Remote Sens 48:1623–1625Google Scholar
  162. Palmer KF, Williams D (1974) Optical properties of water in the near infrared. J Opt Soc Am 64:1107–1110Google Scholar
  163. Panagos P, Borrelli P, Poesen J, Ballabio C, Lugato E, Meusburger K, Montanarella L, Alewell C (2015) The new assessment of soil loss by water erosion in Europe. Environ Sci Policy 54:438–447Google Scholar
  164. Piech KR, Walker JE (1974) Interpretation of soils. Photogramm Eng 40:87–94Google Scholar
  165. Potter KN, Horton R, Cruse RM (1987) Soil surface roughness effects on radiation reflectance and soil heat flux. Soil Sci Soc Am J 51:855–860Google Scholar
  166. Previtali F (2014) Pedoenvironments of the Mediterranean countries: resources and threats. In: Kapur S, Ersahin S (eds) Soil Security for ecosystem management, chap 4. Springer, New York, NY, pp 61–82Google Scholar
  167. Rast M, Nieke J, Ananasso C, Bach H, Ben Dor E, Chabrillat S, Colombo R, Feret JB, Giardino C, Green RO, Guanter L, Marsh S, Ong C, Rum G, Schaepman M, Schlerf M, Skidmore AK, Strobl P, Gascon F, Adams J, Isola C, Del Bello U (2019) The copernicus hyperspectral imaging mission for the environment (CHIME). In: Abstract 2019 ESA living planet symposium, Milan, Italy, 13–17 May 2019Google Scholar
  168. Rieke-Zapp DH, Nearing MA (2005) Digital close range photogrammetry for measurement of soil erosion. Photogramm Rec 20(109):69–87Google Scholar
  169. Rodger A, Cudahy T (2009) Vegetation corrected continuum depths at 2.20 µm: an approach for hyperspectral sensors. Remote Sens Environ 113:2243–2257Google Scholar
  170. Rodríguez-Caballero E, Escribano P, Cantón Y (2014) Advanced image processing methods as a tool to map and quantify different types of biological soil crust. ISPRS J Photogramm Remote Sens 90:59–67Google Scholar
  171. Rogge D, Bauer A, Zeidler J, Mueller A, Esch T, Heiden U (2017) Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014). Remote Sens Environ 205:1–17Google Scholar
  172. Romero DJ, Ben-Dor E, Demattê JAM, Souza AB, Vicente LE, Tavares TR, Martello M, Strabeli TF, da Silva Barros PP, Fiorio PR, Gallo BC, Sato MV, Eitelweind MT (2018) Internal soil standard method for the Brazilian soil spectral library: performance and proximate analysis. Geoderma 312:95–103Google Scholar
  173. Rosa JD, Cooper M, Darboux F, Medeiros JC (2012) Soil roughness evolution in different tillage systems under simulated rainfall using a semivariogram-based index. Soil Tillage Res 124:226–232Google Scholar
  174. Rossel RV, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131(1):59–75Google Scholar
  175. Schmid T, Koch M, Gumuzzio J (2008) Application of hyperspectral imagery to map soil salinity. In: Metternicht G, Zinck A (eds) Remote sensing of soil salinization: impact and land management. CRC Press, Boca Raton, pp 113–139 Chapter 7 Google Scholar
  176. Schmid T, Rodríguez-Rastrero M, Escribano P, Palacios-Orueta A, Ben-Dor E, Plaza A, Milewski R, Huesca M, Bracken A, Cicuéndez V, Pelayo M, Chabrillat S (2016) Characterization of soil erosion indicators using hyperspectral data from a Mediterranean rainfed cultivated region. IEEE J Sel Top Appl Earth Obs Remote Sens 9(2):845–860Google Scholar
  177. Schwanghart W, Jarmer T (2011) Linking spatial patterns of soil organic carbon to topography: a case study from south-eastern Spain. Geomorphology 126:252–263Google Scholar
  178. Schwartz G, Eshel G, Ben-Dor E (2011) Reflectance spectroscopy as a tool for monitoring contaminated soils. In: Pascucci S (ed) Soil contamination. InTech, Manhattan, pp 67–90Google Scholar
  179. Selige T, Böhner J, Schmidhalter U (2006) High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma 136:235–244Google Scholar
  180. Sellers PJ et al (1995) Remote sensing of the land-surface for studies of global change: models-algorithms-experiments. Remote Sens Environ 51:3–26Google Scholar
  181. Shoshany M (1993) Roughness-reflectance relationships of bare desert terrain: an empirical study. Remote Sens Environ 45:15–27Google Scholar
  182. Shoshany M, Goldshleger N, Chudnovsky A (2013) Monitoring of agricultural soil degradation by remote-sensing methods: a review. Int J Remote Sens 34(17):6152–6181Google Scholar
  183. Steinberg A, Chabrillat S, Stevens A, Segl K, Foerster S (2016) Prediction of common surface soil properties based on Vis–NIR airborne and simulated EnMAP imaging spectroscopy data: prediction accuracy and influence of spatial resolution. Remote Sens 8(7):613Google Scholar
  184. Stenberg B, Viscarra Rossel RA, Mouazen AM, Wetterlind J (2015) Visible and near infrared spectroscopy in soil science. In: Sparks DL (ed) Advances in agronomy, vol 107. Academic Press, Burlington, pp 163–215.  https://doi.org/10.1016/s0065-2113(10)07005-7 Google Scholar
  185. Stevens A, van Wesemael B, Bartholomeus H, Rosillon D, Tychon B, Ben-Dor E (2008) Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils. Geoderma 144:395–404Google Scholar
  186. Stevens A, Udelhoven T, Denis A, Tychon B, Lioy R, Hoffmann L, van Wesemael B (2010) Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy. Geoderma 158:32–45Google Scholar
  187. Stevens A, Miralles I, Van Wesemael B (2012) Soil organic carbon predictions by airborne imaging spectroscopy: comparing cross-validation and validation. Soil Sci Soc Am J 76:2174–2183Google Scholar
  188. Stevens A, Nocita M, Tóth G, Montanarella L, Van Wesemael B (2013) Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoS ONE 8(6):1–13Google Scholar
  189. Stevens F, Bogaert P, van Wesemael B (2015) Detecting and quantifying field-related spatial variation of soil organic carbon using mixed-effect models and airborne imagery. Geoderma 259–260:93–103Google Scholar
  190. Stolte J, Tesfai M, Øygarden L, Kværnø S, Keizer J, Verheijen F, Panagos P, Ballabio C, Hessel R (2016) Soil threats in Europe; EUR 27607Google Scholar
  191. Stoner ER, Baumgardner MF (1981) Characteristic variations in reflectance of surface soils. Soil Sci Soc Am J 45:1161–1165Google Scholar
  192. Taconet OV, Ciarletti V (2007) Estimating soil roughness indices on a ridge-and-furrow surface using stereo photogrammetry. Soil Tillage Res 93:64–76Google Scholar
  193. Thomsen LM, Baartman JEM, Barneveld RJ, Starkloff T, Stolte J (2015) Soil surface roughness: comparing old and new measuring methods and application in a soil erosion model. Soil 1:399–410Google Scholar
  194. Toth G, Jones A, Montanarella L (2013) The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union. Environ Monit Assess 185:7409–7425Google Scholar
  195. Toy TJ, Foster GR, Renard KG (2002) Soil erosion: processes, prediction, measurement, and control. Wiley, New YorkGoogle Scholar
  196. Tsakiridis NL, Tziolas N, Dimitrakos A, Galanis G, Ntonou E, Tsirika A, Terzopoulou E, Kalopesa E, Zalidis GC (2017) Predicting soil properties for sustainable agriculture using Vis–NIR spectroscopy: a case study in northern Greece. In: Proceedings of SPIE 10444, fifth international conference on remote sensing and geoinformation of the environment (RSCy2017).  https://doi.org/10.1117/12.2277905
  197. Ulaby FT, Moore RK, Fung AK (1982) Microwave remote sensing active and passive. Addison-Wesley, ReadingGoogle Scholar
  198. UNEP (2012) One planet, how many people? A review of Earth’s carrying capacity, A discussion paper for the year of RIO+20. UNEP Global Environmental Alert ServiceGoogle Scholar
  199. Ussiri DAN, Lal R (2018) The role of soil management and restoration in advancing sustainable development goals. In: Lal R, Horn R, Kosaki T (eds) Soil and sutainable development goals, vol 5. Catena, Stuttgart, pp 61–81Google Scholar
  200. Van der Linden S, Rabe A, Held M, Jakimow B, Leitão PJ, Okujeni A, Schwieder M, Suess S, Hostert P (2015) The EnMAP-Box—a toolbox and application programming interface for EnMAP data processing. Remote Sens 7:11249–11266Google Scholar
  201. Vermang J, Norton LD, Baetens JM, Huang C, Cornelis WM, Gabriels D (2013) Quantification of soil surface roughness evolution under simulated rainfall. Trans Am Soc Agric Biol Eng 56(2):505–514Google Scholar
  202. Viscarra Rossel R, Behrens T, Ben-Dor E, Brown D, Demattê J, Shepherd K, Shi Z, Stenberg B, Stevens A, Adamchuk V (2016) A global spectral library to characterize the world’s soil. Earth Sci Rev 155:198–230Google Scholar
  203. Vrieling A, De Jong SM, Sterk G, Rodrigues SC (2008) Timing of erosion and satellite data: a multi-resolution approach to soil erosion risk mapping. Int J Appl Earth Obs Geoinf 10(3):267–281Google Scholar
  204. Wang Z, Coburn CA, Ren X, Teillet PM (2012) Effect of soil surface roughness and scene components on soil surface bidirectional reflectance factor. Can J Soil Sci 92:297–313Google Scholar
  205. Weber B, Hill J (2016) Remote sensing of biological soil crusts at different scales. In: Weber B et al (eds) Biological soil crusts: an organizing principle in drylands. Springer, Cham, pp 215–234Google Scholar
  206. Weber B, Olehowski C, Knerr T, Hill J, Deutschewitz K, Wessels DCJ et al (2008) A new approach for mapping of biological soil crusts in semidesert areas with hyperspectral imagery. Remote Sens Environ 112:2187–2201Google Scholar
  207. Weksler S, Notespo G, Ben-Dor E (2017) an automated procedure for reducing atmospheric features and emphasizing surface emissivity in hyperspectral longwave infrared (LWIR) images. Int J Remote Sens.  https://doi.org/10.1080/01431161.2017.1325535 Google Scholar
  208. Whiting ML, Li L, Ustin SL (2004a) Predicting water content using Gaussian model on soil spectra. Remote Sens Environ 89:535–552Google Scholar
  209. Whiting ML, Li L, Ustin SL (2004b) Correcting mineral abundance estimates for soil moisture. In: Green RO (ed) 13th annual JPL airborne Earth science workshop, Pasadena, California, March 30–April 3, 2004. JPL Publication 05-3-1Google Scholar
  210. Whiting ML, Palacios-Orueta A, Li L, Ustin SL (2005) Light absorption model for water content to improve soil mineral estimates in hyperspectral imagery. In: Pecora 16, global priorities in land remote sensing, Sioux Falls, South Dakota, 23–27 October 2005. American Society of Photogrammetry and Remote SensingGoogle Scholar
  211. Wu CY, Jacobson AR, Laba M, Baveye PC (2009) Accounting for surface roughness effects in the near-infrared reflectance sensing of soils. Geoderma 152:171–180.  https://doi.org/10.1016/j.geoderma.2009.06.002 Google Scholar
  212. Zhao X, Xue J-F, Zhang X-Q, Kong F-L, Chen F, Lal R et al (2015) Stratification and storage of soil organic carbon and nitrogen as affected by tillage practices in the North China Plain. PLoS ONE 10(6):e0128873Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Section Remote SensingHelmholtz Center Potsdam GFZ German Research Center for GeosciencesPotsdamGermany
  2. 2.Department of Geography and Human EnvironmentTel Aviv UniversityTel AvivIsrael
  3. 3.Department of Soil and Remote Sensing Soil ScienceAdam Mickiewicz UniversityPoznanPoland
  4. 4.UMR LISAH (INRA-IRD-SupAgro)IRDMontpellierFrance
  5. 5.Department of EnvironmentCentro de Investigaciones Energéticas, Medioambientes y Tecnológicas (CIEMAT)MadridSpain
  6. 6.Georges Lemaître Centre for Earth and Climate Research, Earth and Life InstituteUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations