Foundations of Physics

, Volume 39, Issue 8, pp 921–936 | Cite as

Nonlocality Without Nonlocality

  • Steven WeinsteinEmail author


Bell’s theorem is purported to demonstrate the impossibility of a local “hidden variable” theory underpinning quantum mechanics. It relies on the well-known assumption of ‘locality’, and also on a little-examined assumption called ‘statistical independence’ (SI). Violations of this assumption have variously been thought to suggest “backward causation”, a “conspiracy” on the part of nature, or the denial of “free will”. It will be shown here that these are spurious worries, and that denial of SI simply implies nonlocal correlation between spacelike degrees of freedom. Lorentz-invariant theories in which SI does not hold are easily constructed: two are exhibited here. It is conjectured, on this basis, that quantum-mechanical phenomena may be modeled by a local theory after all.


Nonlocal Bell Quantum Kochen-Specker Nonlocality Bell’s theorem Entanglement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell, J.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964) Google Scholar
  2. 2.
    Bell, J.: La nouvelle cuisine. In: Bell, M., Gottfried, K., Veltman, M. (eds.) John S. Bell on the Foundations of Quantum Mechanics, pp. 216–234. World Scientific, Singapore (2001) Google Scholar
  3. 3.
    Bohm, D.: Quantum Theory. Prentice-Hall, Englewood Cliffs (1951) Google Scholar
  4. 4.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. 1. Phys. Rev. 85, 166–179 (1952) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. 2. Phys. Rev. 85, 180–193 (1952) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden variable theories. Phys. Rev. Lett. 23, 880–884 (1969) CrossRefADSGoogle Scholar
  7. 7.
    Conway, J., Kochen, S.: The free will theorem. Found. Phys. 36, 1441 (2006) zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Costa De Beauregard, O.: S Matrix, Feynman zigzag and Einstein correlation. Phys. Lett. A 67, 171–174 (1978) CrossRefADSGoogle Scholar
  9. 9.
    Courant, R.: Methods of Mathematical Physics, Vol. II: Partial Differential Equations. Interscience, New York (1962) zbMATHGoogle Scholar
  10. 10.
    Craig, W., Weinstein, S.: On determinism and well-posedness in multiple time dimensions. Proc. R. Soc. A (2008, forthcoming). arXiv:0812.0210
  11. 11.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of reality be considered complete? Phys. Rev. 47, 777–780 (1935) zbMATHCrossRefADSGoogle Scholar
  12. 12.
    Fahmi, A.: Non-locality and classical communication of the hidden variable theories (2005). arXiv:quant-ph/0511009
  13. 13.
    Fine, A.: Correlations and physical locality. In: Asquith, P., Giere, R. (eds.) PSA 1980, vol. 2, pp. 535–556. Philosophy of Science Association, E. Lansing (1981) Google Scholar
  14. 14.
    Fine, A.: The Shaky Game: Einstein, Realism and the Quantum Theory. University of Chicago Press, Chicago (1986) Google Scholar
  15. 15.
    Hume, D.: A Treatise of Human Nature. Oxford Univ. Press, Oxford (2000). Orig. pub. 1739–1740 Google Scholar
  16. 16.
    Jarrett, J.: On the physical significance of the locality conditions in the Bell arguments. Noûs 18, 569–589 (1984) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Jarrett, J.: Bell’s theorem: a guide to the implications. In: Cushing, J., McMullin, E. (eds.) Philosophical Consequences of Quantum Theory, pp. 60–79. Univ. of Notre Dame Press, Notre Dame (1989) Google Scholar
  18. 18.
    John, F.: Partial Differential Equations, 4th edn. Springer, Berlin (1992) Google Scholar
  19. 19.
    Lewis, P.: Conspiracy theories of quantum mechanics. Br. J. Philos. Sci. 57, 359–381 (2006) CrossRefGoogle Scholar
  20. 20.
    Price, H.: Time’s Arrow and Archimedes’ Point: New Directions for the Physics of Time. Oxford Univ. Press, Oxford (1996) Google Scholar
  21. 21.
    Redhead, M.: Incompleteness, Nonlocality, and Realism. Clarendon, Oxford (1989) Google Scholar
  22. 22.
    Seevinck, M.: Parts and wholes: an inquiry into quantum and classical correlations. Ph.D. thesis, Utrecht University (2008). arXiv:0811.1027
  23. 23.
    Shimony, A.: Controllable and uncontrollable non-locality. In: Kamefuchi, S., Ezawa, H., Namiki, M. (eds.) Foundations of Quantum Mechanics in Light of New Technology. The Physical Society of Japan, Tokyo (1984). Reprinted in A. Shimony, Search for a Naturalistic World View, vol. II, pp. 130–139, Cambridge Univ. Press, Cambridge (1993) Google Scholar
  24. 24.
    Shimony, A.: An exchange on local beables. In: Search for a Naturalistic World View, vol. II, pp. 163–170. Cambridge University Press, Cambridge (1993) Google Scholar
  25. 25.
    Spekkens, R.W.: Contextuality for preparations, transformations and unsharp measurements. Phys. Rev. A 71, 052108 (2005) CrossRefADSGoogle Scholar
  26. 26.
    Sutherland, R.I.: Bell’s theorem and backwards in time causality. Int. J. Theor. Phys. 22, 377–384 (1983) CrossRefGoogle Scholar
  27. 27.
    ’t Hooft, G.: On the free will postulate in quantum mechanics (2007). arXiv:quant-ph/0701097
  28. 28.
    Weinstein, S.: Multiple time dimensions (2008). arXiv:0812.3869

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Dept. of PhilosophyU. WaterlooWaterlooCanada

Personalised recommendations