Skip to main content
Log in

Quantum Theories with Local Information Flow

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Bell non-locality is a term that applies to specific modifications and interpretations of quantum mechanics. Yet, Bell’s original 1964 theorem is often used to assert that unmodified quantum mechanics itself is non-local and that local realist interpretations are untenable. Motivated by Bell’s original inequality, we identify four viable categories of quantum theories: local quantum mechanics, superdeterminism, non-local collapse quantum mechanics, and non-local hidden variable theories. These categories, however, are not restricted by Bell’s definition of locality. In light of currently available no-go theorems, local and deterministic descriptions seem to have been overlooked, and one possible reason for that could be the conflation between Bell-locality and a broader principle of locality. We present examples of theories where a local flow of quantum information is possible and assess whether current experimental proposals and an improved philosophy of science can contrast interpretations and distinguish between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available within the article.

Notes

  1. The Nobel Prize in Physics 2022 and The 2023 Breakthrough Prize in Fundamental Physics.

References

  1. J.S. Bell, On the Einstein Podolsky Rosen paradox. Physics Physique Fizika 1, 195–200 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

    Article  MathSciNet  Google Scholar 

  2. J.S. Bell, A. Aspect, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, 2nd edn. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511815676

  3. R. Bertlmann, A. Zeilinger (eds.), Quantum [Un]Speakables II. Springer, Switzerland (2017). https://doi.org/10.1007/978-3-319-38987-5

  4. T. Maudlin, What Bell did. J. Phys. A: Math. Theor. 47(42), 424010 (2014). https://doi.org/10.1088/1751-8113/47/42/424010

    Article  MathSciNet  ADS  Google Scholar 

  5. N. Nurgalieva, R. Renner, Testing quantum theory with thought experiments. Contemp. Phys. 61(3), 193–216 (2020). https://doi.org/10.1080/00107514.2021.1880075

    Article  ADS  Google Scholar 

  6. W. Myrvold, M. Genovese, A. Shimony, Bell’s Theorem. The Stanford Encyclopedia of Philosophy (2021)

  7. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969). https://doi.org/10.1103/PhysRevLett.23.880

    Article  ADS  Google Scholar 

  8. M.F. Pusey, J. Barrett, T. Rudolph, On the reality of the quantum state. Nat. Phys. 8(6), 475–478 (2012). https://doi.org/10.1038/nphys2309

    Article  Google Scholar 

  9. D. Frauchiger, R. Renner, Quantum theory cannot consistently describe the use of itself. Nat. Commun. 9(1) (2018). https://doi.org/10.1038/s41467-018-05739-8

  10. N. Nurgalieva, S. Mathis, L. del Rio, R. Renner, Thought experiments in a quantum computer. arXiv (2022). https://doi.org/10.48550/arxiv.2209.06236

  11. M.A. Schlosshauer, Decoherence and the Quantum-To-Classical Transition. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-35775-9

  12. J.-Å. Larsson, Loopholes in bell inequality tests of local realism. J. Phys. A: Math. Theor. 47(42), 424003 (2014). https://doi.org/10.1088/1751-8113/47/42/424003

    Article  MathSciNet  Google Scholar 

  13. J.R. Hance, S. Hossenfelder, Bell’s theorem allows local theories of quantum mechanics. Nat. Phys. (2022). https://doi.org/10.1038/s41567-022-01831-5

  14. S. Hossenfelder, Testing super-deterministic hidden variables theories. Found. Phys. 41(9), 1521–1531 (2011). https://doi.org/10.1007/s10701-011-9565-0

    Article  MathSciNet  ADS  Google Scholar 

  15. S.M. Carroll, J. Lodman, Energy Non-conservation in Quantum Mechanics. Found. Phys. 51(4) (2021). https://doi.org/10.1007/s10701-021-00490-5

  16. D. Deutsch, The logic of experimental tests, particularly of Everettian quantum theory. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 55, 24–33 (2016). https://doi.org/10.1016/j.shpsb.2016.06.001

    Article  MathSciNet  ADS  Google Scholar 

  17. D. Deutsch, Quantum theory of probability and decisions. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 455(1988), 3129–3137 (1999). https://doi.org/10.1098/rspa.1999.0443

    Article  MathSciNet  ADS  Google Scholar 

  18. W.H. Zurek, Quantum Darwinism. Nat. Phys. 5(3), 181–188 (2009). https://doi.org/10.1038/nphys1202

    Article  Google Scholar 

  19. C. Marletto, Constructor theory of probability. Proc. R. Soc. A: Math. Phys. Eng. Sci. 472(2192), 20150883 (2016). https://doi.org/10.1098/rspa.2015.0883

    Article  MathSciNet  ADS  Google Scholar 

  20. C.T. Sebens, S.M. Carroll, Self-locating Uncertainty and the origin of probability in Everettian Quantum Mechanics. Br. J. Philos. Sci. 69(1), 25–74 (2018). https://doi.org/10.1093/bjps/axw004

    Article  MathSciNet  Google Scholar 

  21. D. Dürr, D. Lazarovici, Understanding Quantum Mechanics. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40068-2

  22. K.B. Wharton, N. Argaman, Colloquium: Bell’s theorem and locally mediated reformulations of quantum mechanics. Rev. Mod. Phys. 92, 021002 (2020). https://doi.org/10.1103/RevModPhys.92.021002

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Hossenfelder, T. Palmer, Rethinking Superdeterminism. Front. Phys. 8 (2020). https://doi.org/10.3389/fphy.2020.00139

  24. S. Hossenfelder, Superdeterminism: A Guide for the Perplexed. arXiv (2020). https://doi.org/10.48550/arxiv.2010.01324

  25. J.R. Hance, S. Hossenfelder, The wave function as a true ensemble. Proc. R. Soc. A: Math. Phys. Eng. Sci. 478(2262), 20210705 (2022). https://doi.org/10.1098/rspa.2021.0705

    Article  MathSciNet  ADS  Google Scholar 

  26. H. Everett, “Relative State’’ formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957). https://doi.org/10.1103/RevModPhys.29.454

    Article  MathSciNet  ADS  Google Scholar 

  27. H.R. Brown, Everettian quantum mechanics. Contemp. Phys. 60(4), 299–314 (2019). https://doi.org/10.1080/00107514.2020.1733846

    Article  ADS  Google Scholar 

  28. S. Kuypers, D. Deutsch, Everettian relative states in the Heisenberg picture. Proc. R. Soc. A: Math. Phys. Eng. Sci. 477(2246), 20200783 (2021). https://doi.org/10.1098/rspa.2020.0783

    Article  MathSciNet  ADS  Google Scholar 

  29. C. Rovelli, Relational quantum mechanics. Int. J. Theor. Phys. 35(8), 1637–1678 (1996). https://doi.org/10.1007/bf02302261

    Article  MathSciNet  Google Scholar 

  30. P. Martin-Dussaud, C. Rovelli, F. Zalamea, The notion of locality in relational quantum mechanics. Found. Phys. 49(2), 96–106 (2019). https://doi.org/10.1007/s10701-019-00234-6

    Article  MathSciNet  ADS  Google Scholar 

  31. R. Gambini, J. Pullin, The montevideo interpretation of quantum mechanics: A short review. Entropy 20(6), 413 (2018). https://doi.org/10.3390/e20060413

    Article  MathSciNet  ADS  Google Scholar 

  32. C.A. Fuchs, R. Schack, Quantum-Bayesian coherence. Rev. Mod. Phys. 85, 1693–1715 (2013). https://doi.org/10.1103/RevModPhys.85.1693

    Article  ADS  Google Scholar 

  33. C.A. Fuchs, N.D. Mermin, R. Schack, An introduction to QBism with an application to the locality of quantum mechanics. Am. J. Phys. 82(8), 749–754 (2014). https://doi.org/10.1119/1.4874855

    Article  ADS  Google Scholar 

  34. G. ’t Hooft, The Cellular Automaton Interpretation of Quantum Mechanics. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41285-6

  35. I. Sen, Analysis of the superdeterministic invariant-set theory in a hidden-variable setting. Proc. R. Soc. A: Math. Phys. Eng. Sci. 478(2259) (2022). https://doi.org/10.1098/rspa.2021.0667

  36. J. Faye, Copenhagen Interpretation of Quantum Mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Winter 2019 edn. Metaphysics Research Lab, Stanford University (2019)

  37. G.C. Ghirardi, A. Rimini, T. Weber, Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986). https://doi.org/10.1103/PhysRevD.34.470

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013). https://doi.org/10.1103/RevModPhys.85.471

    Article  ADS  Google Scholar 

  39. J.G. Cramer, The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647–687 (1986). https://doi.org/10.1103/RevModPhys.58.647

    Article  MathSciNet  ADS  Google Scholar 

  40. R.E. Kastner, The Transactional Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge, England (2017)

  41. D. Bohm, A suggested interpretation of the quantum theory in terms of “Hidden’’ variables. I. Phys. Rev. 85(2), 166–179 (1952). https://doi.org/10.1103/physrev.85.166

    Article  MathSciNet  ADS  Google Scholar 

  42. M. Schlosshauer, J. Kofler, A. Zeilinger, A snapshot of foundational attitudes toward quantum mechanics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44(3), 222–230 (2013). https://doi.org/10.1016/j.shpsb.2013.04.004

    Article  ADS  Google Scholar 

  43. S. Sivasundaram, K.H. Nielsen, Surveying the Attitudes of Physicists Concerning Foundational Issues of Quantum Mechanics. arXiv (2016). https://doi.org/10.48550/arxiv.1612.00676

  44. K. Gottfried, T.M. Yan, Quantum Mechanics: Fundamentals, 2nd edn. Graduate Texts in Contemporary Physics. Springer, New York, NY (2004)

  45. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014). https://doi.org/10.1103/RevModPhys.86.419

    Article  ADS  Google Scholar 

  46. D. Deutsch, P. Hayden, Information flow in entangled quantum systems. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 456(1999), 1759–1774 (2000). https://doi.org/10.1098/rspa.2000.0585

    Article  MathSciNet  ADS  Google Scholar 

  47. D. Deutsch, C. Marletto, Constructor theory of information. Proc. R. Soc. A: Math. Phys. Eng. Sci. 471(2174), 20140540 (2015). https://doi.org/10.1098/rspa.2014.0540

    Article  MathSciNet  ADS  Google Scholar 

  48. P. Raymond-Robichaud, A local-realistic model for quantum theory. Proc. R. Soc. A: Math. Phys. Eng. Sci. 477(2250), 20200897 (2021). https://doi.org/10.1098/rspa.2020.0897

    Article  MathSciNet  ADS  Google Scholar 

  49. S. Hossenfelder, Testing superdeterministic conspiracy. J. Phys: Conf. Ser. 504, 012018 (2014). https://doi.org/10.1088/1742-6596/504/1/012018

    Article  Google Scholar 

  50. D. Rauch, J. Handsteiner, A. Hochrainer, J. Gallicchio, A.S. Friedman, C. Leung, B. Liu, L. Bulla, S. Ecker, F. Steinlechner, R. Ursin, B. Hu, D. Leon, C. Benn, A. Ghedina, M. Cecconi, A.H. Guth, D.I. Kaiser, T. Scheidl, A. Zeilinger, Cosmic Bell Test Using Random Measurement Settings from High-Redshift Quasars. Phys. Rev. Lett. 121, 080403 (2018). https://doi.org/10.1103/PhysRevLett.121.080403

    Article  ADS  Google Scholar 

  51. T. Maudlin, Philosophy of Physics: Quantum Theory. Princeton Foundations of Contemporary Philosophy. Princeton University Press, Princeton, NJ (2019)

  52. D. Dürr, S. Goldstein, T. Norsen, W. Struyve, N. Zanghì, Can Bohmian mechanics be made relativistic? Proc. Math. Phys. Eng. Sci. 470(2162), 20130699 (2014). https://doi.org/10.1098/rspa.2013.0699

    Article  MathSciNet  Google Scholar 

  53. F.J. Tipler, Quantum nonlocality does not exist. Proc. Natl. Acad. Sci. 111(31), 11281–11286 (2014). https://doi.org/10.1073/pnas.1324238111

    Article  MathSciNet  ADS  Google Scholar 

  54. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, England (2010)

  55. S. Goldstein, Bohmian Mechanics. The Stanford Encyclopedia of Philosophy (2021)

  56. L. Vaidman, Many-Worlds Interpretation of Quantum Mechanics, Fall 2021 edn. Metaphysics Research Lab, Stanford University (2021)

  57. D. Wallace, The Emergent Multiverse. Oxford University Press (2012)

  58. C.A. Bédard, The cost of quantum locality. Proc. R. Soc. A: Math. Phys. Eng. Sci. 477(2246) (2021). https://doi.org/10.1098/rspa.2020.0602

  59. D. Deutsch, The Beginning of Infinity. Penguin, New York, NY (2012)

  60. D. Deutsch, Quantum theory as a universal physical theory. Int. J. Theor. Phys. 24(1), 1–41 (1985). https://doi.org/10.1007/bf00670071

    Article  MathSciNet  Google Scholar 

  61. D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 400(1818), 97–117 (1985). https://doi.org/10.1098/rspa.1985.0070

    Article  MathSciNet  ADS  Google Scholar 

  62. K. Gerhard, R. Renner, Ambiguity in the branching process of Many-Worlds Theories. In: APS March Meeting Abstracts. APS Meeting Abstracts, vol. 2019, pp. 27–004 (2019)

  63. C. Hewitt-Horsman, V. Vedral, Entanglement without nonlocality. Phys. Rev. A 76, 062319 (2007). https://doi.org/10.1103/PhysRevA.76.062319

    Article  MathSciNet  ADS  Google Scholar 

  64. C.A. Bédard, The ABC of Deutsch-Hayden Descriptors. Quantum Reports 3(2), 272–285 (2021). https://doi.org/10.3390/quantum3020017

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge professors S. Dahmen, A. Franklin, N. Lima, S. Prado and S. Saunders for discussions concerning issues addressed in this paper. E.N.C. thanks the support of the National Council for Scientific and Technological Development (CNPq), the support of the Coordination of Superior Level Staff Improvement (CAPES) and the support of the British Council through the Women in Science: Gender Equality 2022 Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Möckli.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Nova Cruz, E.F., Möckli, D. Quantum Theories with Local Information Flow. Braz J Phys 54, 16 (2024). https://doi.org/10.1007/s13538-023-01386-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01386-7

Keywords

Navigation