Skip to main content
Log in

Redesigning the FDMT Food Chain Transfer Model: Now Probabilistically Enabled and Fully Flexible

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In Europe, the two main nuclear accident response decision support systems in use are ARGOS and JRODOS, both of which make use of the FDMT (Food Chain and Dose Module for Terrestrial pathways) model to simulate the transfer of radioactivity along terrestrial food chains and to predict radionuclide activity concentrations in human foodstuffs. FDMT was originally developed in the early 1990s for Southern German agricultural conditions. Its application to other geographical settings has raised concerns regarding its fitness for purpose. Furthermore, the FDMT model in its original format lacks transparency, flexibility, and the possibility to be run probabilistically. In order to improve FDMT’s fitness for purpose and overcome its main shortcomings, it has been implemented in a new modelling platform which incorporates powerful numerical solvers and renders uncertainty and sensitivity analysis possible. The modelling structure of FDMT has been re-configured, and a library configuration has been introduced which offers flexibility in working such that model components can be tested, modified, or replaced easily. The new FDMT allows for the consideration of case/region-specific issues and to make predictions which are of more relevance and of better use with regard to decision making and management of risk. Furthermore, the default databases of FDMT have been updated and wherever possible PDFs have been assigned. In this paper, the transition of FDMT from an old to a new modelling structure is presented along with a demonstration of developments achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

Notes

  1. The choice of iteration numbers is somewhat arbitrary, the number of iterations for sensitivity analysis selected as being a factor of 10 higher than probabilistic runs. The common factor in both cases was that enough iterations were selected to ensure that the statistical information being generated could be deemed reliable.

References

  1. IAEA. (2012). A summary report of the results of the EMRAS programme (2003–2007). IAEA-TECDOC-1678. International Atomic Energy Agency, Vienna, 2012.

  2. Beresford, N. A., Barnett, C. L., Chaplow, J., Lofts, S., Wells, C., Brown, J. E., Hosseini, A., Thørring, H., Almahayni, T., Sweeck, L., Guillén, J., Lind, O.-C., Oughton, D. H., Salbu, B., Teien, H.-C., Perez-Sánchez, D., & Real, A. (2020). CONFIDENCE overview of improvements in radioecological human food chain models and future needs. https://doi.org/10.1051/radiopro/2020019

    Article  Google Scholar 

  3. Brown, J., Dvorzhak, A., Mora, J. C., Pérez-Sanchez, D., Kaasik, M., Tkaczyk, A., Hosseini, A., Iosjpe, M., Popic, J., Smith, J., Vives i Batlle, J., Almahayni, T., Vanhoudt, N., Gonze, M. A., Calmon, Ph., Février, L., Hartmann, Ph., Steiner, M., Urso, L., Oughton, D., Lind, O. C., & Salbu, B. (2019a). CONCERT Deliverable D9.61—Guidance to select level of complexity. EJP-CONCERT, European Joint Programme for the Integration of Radiation Protection Research, H2020 – 662287.

  4. Almahayni, T., Sweeck, L., Beresford, N. A., Barnett, C.L. Lofts, S., Hosseini, A., Brown, J., Thørring, H., & Guillén, J. (2019a) An evaluation of process-based models and their application in food chain assessments. CONCERT Deliverable 9.15. Available from: https://concert-h2020.eu/en/Publications

  5. Hoffman, F. O., & Gardner, R. H. (1983). Evaluation of uncertainties in radiological assessment models. Chapter 11 of Radiological assessment: A textbook on environmental dose analysis. Edited by Till, J. E. and Meyer, H. R. NRC Office of Nuclear Reactor Regulation, Washington, D. C.

  6. Almahayni, T., Beresford, N. A., Crout, N. M. J., & Sweeck, L. (2019). Fit-for-purpose modelling of radiocaesium soil-to-plant transfer for nuclear emergencies: A review. Journal of environmental radioactivity., 201, 58–66.

    Article  CAS  Google Scholar 

  7. EPA. (2009). Guidance on the development, evaluation, and application of environmental models. EPA/100/K-09/003. United States Environmental Protection Agency.

  8. Hammonds, J. S., Hoffman, F. O., & Bartell, S. M (1994). An introductory guide to uncertainty analysis in environmental and health risk assessment. U.S. DEPARTMENT OF ENERGY. ES/ER/TM-35/R1.

  9. ICRP. (2009). Application of the commission’s recommendations for the protection of people in emergency exposure situations. ICRP PUBLICATION 109. Volume 39 No. 1 2009.

  10. Attwood, C., Fayers, C., Mayall, A., Brown, J., & Simmonds, J. R. (1996). FARMLAND: Model description and evaluation of model performance (IAEA-TECDOC--904). International Atomic Energy Agency (IAEA).

  11. Uslu, I., Fields, D. E., & Yalçıntaş, M. G. (1988). TRANFOOD radionuclide transport via terrestrial food chain. USA, Oak Ridge National Laboratory.

  12. Simon-Cornu, M., Beaugelin-Seiller, K., Boyer, P., Calmon, P., Garcia-Sanchez, L., Mourlon, C., Nicoulaud, V., Sy, M. M., & Gonze, M. A. (2015). Evaluating variability and uncertainty in radiological impact assessment with the probabilistic database of SYMBIOSE. Journal of Environmental Radioactivity, 139, 91–102.

    Article  CAS  Google Scholar 

  13. Müller H., Gering F., & Pröhl, G. (2003). Model description of the terrestrial food chain and dose module. FDMT in RODOS PV6.0. RODOS(RA3)-TN(03)06.

  14. Hoe, S., Mc Ginnity, P., Charnock, T. W., Gering, F., Andersson, K. G., & Astrup, P. (2008). ARGOS CBRN decision support system for nuclear and radiological emergency management. In: Proceedings: IRPA 12. The 12th International Congress of the International Radiation Protection Association October 19–24, Buenos Aires, Argentina. http://orbit.dtu.dk/files/3924948/Hoe_paper.pdf

  15. Levdin, I., Trybushnyi, D., Zheleznyak, M., & Raskob, W. (2010). RODOS re-engineering: aims and implementation details. In: In: Raskob, W., Hugon, M. (Eds.), Enhancing nuclear and radiological emergency management and rehabilitation: Key results of the EURANOS European Project. Radioprotection, 45. S181–S189. https://doi.org/10.1051/radiopro/2010024

  16. Müller, H., & Pröhl, G. (1993). ECOSYS-87: A dynamic model for assessing radiological consequences of nuclear accidents. Health Physics, 64, 232–252.

    Article  Google Scholar 

  17. IAEA. (2010). Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports Series No. 472. IAEA, Vienna.

  18. Andersson, K. G., Nielsen, S. P., Thørring, H., Hansen, H. S., Joensen, H. P., Isaksson, M., Kostiainen, E., Suolanen, V., & Pálsson, S. E. (2011). Revision of deposition and weathering parameters for the ingestion dose module (ECOSYS) of the ARGOS and RODOS decision support systems. J. Env. Rad., 102, 1024–1031.

    Article  CAS  Google Scholar 

  19. NAP. (2013). Institute of Medicine 2013. Environmental decisions in the face of uncertainty. Washington, DC: The National Academies Press. https://doi.org/10.17226/12568

  20. Raskob, W., Beresford, N. A., Duranova, T., Korsakissok, I., Mathieu, A., Montero, M., Müller, T., Turcanu, C., & Woda, C. (2020). CONFIDENCE: Project description and main results. Radioprotection 55.https://doi.org/10.1051/radiopro/2020008

  21. Raskob, W., & Duranova, T. (2020). Editorial: The main results of the European CONFIDENCE project. Radioprotection 55. https://doi.org/10.1051/radiopro/2020007

  22. Hinton, T. G., Garnier-Laplace, J., Vandenhove, H., Dowdall, M., Adam-Guillermin, C., Alonzo, F., Barnett, C., Beaugelin-Seiller, K., Beresford, N. A., Bradshaw, C., Brown, J., Eyrolle, F., Fevrier, L., Gariel, J.-C., Gilbin, R., Hertel-Aas, T., Horemans, N., Howard, B. J., Ikäheimonen, T., … Vives i Batlle, J. . (2013). An invitation to contribute to a strategic research agenda in radioecology. Journal of Environmental Radioactivity, 115, 78–82. https://doi.org/10.1016/j.jenvrad.2012.07.011

    Article  CAS  Google Scholar 

  23. ERA. (2019). Strategic Research Agenda for Radioecology 3rd version [DRAFT] European Radioecology Alliance. Available at : https://radioecology-exchange.org/sites/default/files/ALLIANCE%20SRA.pdf. Accessed 05/11/2020.

  24. Nielsen, S. P., & Andersson, K. (2006). EcoDoses: Improving radiological assessment of doses to man from terrestrial ecosystems. A status report for the NKS-B project 2005, NKS-123, ISBN 87–7893–184–3.

  25. Nielsen, S. P., & Andersson, K. (2008). PardNor - PARameters for ingestion dose models for NORdic areas. NKS-174, ISBN 978–87–7893–240–2.

  26. Nielsen, S. P., & Andersson, K. (2009a). EcoDoses: Improving radiological assessment of doses to man from terrestrial ecosystems. A status report for the NKS-B project 2006, NKS-184, ISBN 978–87–7893–250–1.

  27. Nielsen, S. P., & Andersson, K. (2009b). PardNor—PARameters for ingestion dose models for NORdic areas. Status report for the NKS-B activity 2008. NKS-185, ISBN 978–87–7893–251–8.

  28. Thørring, H., Dyve, J. E., Hevrøy, T. H., Lahtinen, J., Liland, A., Montero, M., Real, A., Simon-Cornu, M., & Trueba, C. (2016). Sets of improved parameter values for Nordic and Mediterranean ecosystems for Cs-134/137, Sr-90, I-131 with justification text. DELIVERABLE (IRA-Human-D3). COMET (Contract Number: Fission-2012–3.4.1–604794).

  29. Poon, C. B., Au, S. M., Proehl, G., & Müller, H. (1997). Adaptation of ECOSYS-87 to Hong Kong environmental conditions. Health Physics, 72(856–64), 1997.

    Google Scholar 

  30. Slavik, O., Fulajtar, E., Müller, H., & Proehl, G. (2001). Model for food chain transfer and dose assessment in areas of the Slovak Republic. Radiation and Environmental Biophysics, 40, 59–67.

    Article  CAS  Google Scholar 

  31. Lind, O. C., Brown, J. E., Hosseini, A., Salbu, B., Kashparov, V., & Beresford, N. A. (2019). Evaluation of the importance of radioactive particles in radioecological models. CONCERT Deliverable 9.16. Available from: https://concert-h2020.eu/en/Publications

  32. Brown, J. E., Beresford, N. A., Hosseini A., & Barnett, C. L. (2020). Applying process-based models to the Borssele scenario. Radioprotection, 55(HS1), S109–S117.

  33. Andersson, K. G., Nielsen, S. P., Thørring, H., Hansen, H. S., Joensen, H. P., Isaksson, M., Kostiainen, E., Suolanen, V., & Pálsson, S. E. (2011). Revision of deposition and weathering parameters for the ingestion dose module (ECOSYS) of the ARGOS and RODOS decision support systems. Journal of Environmental Radioactivity, 102(2011), 1024–1031.

    Article  CAS  Google Scholar 

  34. IAEA. (2009). Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments. TECDOC-1616. IAEA, Vienna.

  35. Pröhl, G., & Huffman, P. O. (1996). Radionuclide interception and loss processes in vegetation. Modelling of radionuclide interception and loss processes in vegetation and of transfer in semi-natural ecosystems. Second report of the VAMP Terrestrial Working Group. IAEA-TECDOC-857. ISSN 1011–4289.

  36. Avila, R., Broed, R., & Pereira, A. (2005). ECOLEGO - A toolbox for radioecological risk assessment Proceedings of the International Conference on the Protection from the Effects of Ionizing Radiation, IAEA-CN-109/80. Stockholm: International Atomic Energy Agency. 229 - 232.

  37. Ecolego. (2020). http://ecolego.facilia.se/ecolego/show/HomePage. Accessed 05/11/2020.

  38. Müller, H., Gering, F., & Pröhl, G. (2004). Model description of the terrestrial food chain and dose module FDMT in RODOS PV 6.0., RODOS(RA3)-TN(03)06, Report (version 1.1, 18.02.2004).

  39. Skuterud, L., & Thørring, H. (2012). Averted doses to Norwegian Sámi reindeer herders after the Chernobyl accident. Health Physics, 102(2), 208–216. https://doi.org/10.1097/HP.0b013e3182348e12

    Article  CAS  Google Scholar 

  40. Staudt, C. (2016). HARMONE Set of regions with common FEPs and parameters. Deliverable D5.37 for OPERRA. EC, Brussels.

  41. Åhman, B. (2007). Modelling radiocaesium transfer and long-term changes in reindeer. Journal of Environmental Radioactivity, 98, 153–165.

    Article  Google Scholar 

  42. Beresford, N. A., Wood, M. D., Vives i Batlle, J., Yankovich, T. L., Bradshaw, C., & Willey, N. (2016). Making the most of what we have: Application of extrapolation approaches in radioecological wildlife transfer models. Journal of Environmental Radioactivity, 151, 373–386. https://doi.org/10.1016/j.jenvrad.2015.03.022

    Article  CAS  Google Scholar 

  43. IAEA. (1994). Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Technical Reports Series No. 364. IAEA, Vienna.

  44. Brown, J. E., Avila, R., Barnett, C. L., Beresford, N. A., Hosseini, A., Lind, O. C., Oughton, D. H., Perez, D., Salbu, B., Teien, H. C., & Thørring, H. (2019b) Improving models and learning from post-Fukushima studies. CONCERT Deliverable 9.13. Available from: https://concert-h2020.eu/en/Publications

  45. Brown, J. E., Beresford, N. A., & Hosseini, A. (2013). Approaches to providing missing transfer parameter values in the ERICA Tool - How well do they work? Journal of Environmental Radioactivity, 126, 399–411. https://doi.org/10.1016/j.jenvrad.2012.05.005

    Article  CAS  Google Scholar 

  46. Beresford, N. A., Barnett, C. L., & Guillen, J. (2020). Can models based on phylogeny be used to predict radionuclide activity concentrations in crops? Journal of Environmental Radioactivity, 218(2020), 106263. https://doi.org/10.1016/j.jenvrad.2020.106263

    Article  CAS  Google Scholar 

  47. EPA. (1997). Guiding principles for Monte Carlo analysis. EPA/630/R-97/001, March 1997.

  48. WHO. (2008). Harmonization Project Document No. 6. PART 1: Guidance document on characterizing and communicating uncertainty in exposure assessment. WHO Press, World Health Organization, Geneva , Switzerland.

  49. Absalom, J. P., Young, S. D., Crout, N. M. J., Sanchez, A., Wright, S. M., Smolders, E., Nisbet, A. F., & Gillett, A. G. (2001). Predicting the transfer of radiocaesium from organic soils to plants using soil characteristics. Journal of Environmental Radioactivity, 52, 31–43. https://doi.org/10.1016/S0265-931X(00)00098-9

    Article  CAS  Google Scholar 

  50. Tarsitano, D., Young, S. D., & Crout, N. M. (2011). Evaluating and reducing a model of radiocaesium soil-plant uptake. Journal of environmental radioactivity, 102, 262–269.

    Article  CAS  Google Scholar 

  51. Søvik, Å., Vives I Batlle, J., Duffa, C., Masque, P., Lind, O.C., Salbu, B., Kashparov, V., García-Tenorio, R., Beresford, N. A., Thørring, H., Skipperud, L., Michalik, B., & Steiner, M. (2017). COMET: Final report of WP3 activities. COMET DELIVERABLE (D-N°3.7) EC, Brussels.

  52. Sheppard, S. C. (2005). Transfer parameters: Are on-site data really better? Human and Ecological Risk Assessment, 11, 939–949. https://doi.org/10.1080/10807030500257747

    Article  CAS  Google Scholar 

  53. Urso, L., Ipbüker, C., Mauring, K., Ohvril, H., Vilbaste, M., Kaasik, M., Tkaczyk, A., Brown, J., Hosseini, A., Iosjpe, M., Lind, O.Ch., Salbu, B., Hartmann, Ph., Steiner, M., Mora, J.C., Pérez-Sánchez, D., Real, A., Smith, J., Mourlon, Ch., Masoudi, P., Gonze, M. A., Le Coz, M., Brimo, K., & Vives i Batlle, J. (2019). D9.62—Methodology to quantify improvement: Guidance on uncertainty analysis for radioecological models. EJP-CONCERT European Joint Programme for the Integration of Radiation Protection Research H2020 – 662287.

  54. Saltelli, A., Tarantola, E., Campolongo, F., & Ratto, M. (2004). Sensitivity analysis in practice—A guide to assessing scientific models. John Wiley & Sons Ltd.

    Google Scholar 

  55. Caniou, Y. (2012). Global sensitivity analysis for nested and multiscale models. PhD thesis, Universit´e Blaise Pascal, Clermont-Ferrand.

  56. Wiederkehr Ph. (2018). Global sensitivity analysis with dependent inputs. R-MTWiederkehr-001. Chair of Risk, Safety And Uncertainty Quantification, ETH Zurich.

  57. Plischke, E. (2009). An effective algorithm for computing global sensitivity indices (EASI). Reliab. Eng. Syst. Safe., 95, 354–360. https://doi.org/10.1016/j.ress.2009.11.005

    Article  Google Scholar 

  58. Richter, K., Gering, F., & Muller, H. (2002). Data assimilation for assessing radioactive contamination of feed and foodstuffs. Paper from: Development and Application of Computer Techniques to Environmental Studies, CA Brebbia and P Zannetti (Editors). ISBN 1–85312–909–7.

  59. BIOMOVS Technical Report 13, part 1 (1991). Scenario A4, Multiple model testing using Chernobyl fallout data of 1–131 in forage and milk and Cs-137 in forage, milk, beef and grain.

  60. Giardina, M., & Buffa, P. (2018). A new approach for modelling dry deposition velocity of particles. Atmospheric Environment, 180(2018), 11–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Cath Barnett (UK CEH) for collating the revised parameter values we have used. The work described in this paper was conducted within the CONFIDENCE project which was part of the CONCERT project.

Funding

The CONCERT project received funding from the Euratom Research and Training programme (2014–2018) under grant agreement no. 662287. The work of Ali Hosseini, Deborah Oughton, and Justin Brown was (partly) supported by the Research Council of Norway through its Centre’s of Excellence funding scheme, project number 223268/F50.

Author information

Authors and Affiliations

Authors

Contributions

AH coordinated the activities in the study and is the main author of the work. AH collated parameter datasets and conducted simulations using the newly developed software. RA was responsible for the development and implementation of the software/programme code used in the study. NB was coordinator of the project under which this work was performed (i.e. CONFIDENCE work-package Leader) and was instrumental in directing this work. NB was a co-author and involved in drafting of the manuscript and collated parameter datasets. JB is a co-supervisor of AH’s PhD and as such was involved in the planning and direction of the study. He was heavily involved in assisting to draft and structure the manuscript, collated parameter datasets, and conducted simulations using the newly developed software. DO is the main supervisor of AH’s PhD and as such was involved in the planning and direction of the study. DO was involved in prior-to-submission review of the manuscript.

Corresponding author

Correspondence to A. Hosseini.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Soil to plant transfer factors (TF, unitless) for caesium, strontium, and iodine (new values from IAEA [29])

Element

Plant

New default (old default)

Distribution*

Mean

STD

Cs

Beet_leaves

5.6E − 3 (3.0E − 2)

1.1E − 2

1.9E − 2

Leafy_vegetables

6.0E − 3 (2.0E − 2)

1.7E − 2

2.1E − 2

Maize

1.8E − 2 (2.0E − 2)

3.0E − 2

2.8E − 2

Beet

6.7E − 3 (1.0E − 2)

1.2E − 2

1.8E − 2

Corncobs

6.3E − 3 (1.0E − 2)

1.1E − 2

1.1E − 2

Fruit

8.7E − 4 (2.0E − 2)

2.3E − 3

3.3E − 3

Oats

2.5E − 2 (2.0E − 2)

6.6E − 2

1.3E − 1

Potatoes

1.2E − 2 (1.0E − 2)

2.1E − 2

2.5E − 2

Rye

2.5E − 2 (2.0E − 2)

6.6E − 2

1.3E − 1

Spring_barley

2.5E − 2 (2.0E −  − 2)

6.6E − 2

1.3E − 1

Spring_wheat

2.6E − 2 (2.0E − 2)

6.7E − 2

1.3E − 1

Winter_barley

2.5E − 2 (2.0E − 2)

6.6E − 2

1.3E − 1

Winter_wheat

2.6E − 2 (2.0E − 2)

6.7E − 2

1.3E − 1

Berries

1.5E − 3 (2.0E − 2)

2.9E − 3

3.3E − 3

Fruit_vegetables

1.1E − 3 (1.0E − 2)

3.5E − 3

7.5E − 3

Root_vegetables

6.7E − 3 (1.0E − 2)

1.2E − 2

1.8E − 2

Grass (Intensive)

5.5E − 2 (5.0E − 2)

1.2E − 1

1.8E − 1

Grass (Extensive)

1.7E − 1 (1.0E0)

2.4E − 2

2.6E − 2

Sr

Beet_leaves

1.2E − 1 (8.0E − 1)

2.4E − 1

2.2E − 1

Leafy_vegetables

7.6E − 2 (4.0E − 1)

1.9E − 1

1.8E − 1

Maize

1.8E − 1 (3.0E − 1)

2.5E − 1

1.9E − 1

Beet

1.2E − 1 (4.0E − 1)

2.4E − 1

2.2E − 1

Corn_cobs

6.1E − 2 (2.0E − 1)

1.1E − 1

1.2E − 2

Fruit

2.6E − 3 (1.0E − 1)

3.8E − 3

2.9E − 3

Oats

9.6E − 2 (2.0E − 1)

1.6E − 1

1.7E − 1

Potatoes

3.4E − 2 (5.0E − 2)

5.0E − 2

4.6E − 2

Rye

9.6E − 2 (2.0E − 1)

1.6E − 1

1.7E − 1

Spring_barley

9.6E − 2 (2.0E − 1)

1.6E − 1

1.7E − 1

Spring_wheat

9.7E − 2 (2.0E − 1)

1.6E − 1

1.7E − 1

Winter_barley

9.6E −  − 2 (2.0E − 1)

1.6E − 1

1.7E − 1

Winter_wheat

9.7E − 2 (2.0E − 1)

1.6E − 1

1.7E − 1

Berries

3.3E − 2 (1.0E − 1)

5.5E − 2

6.9E − 2

Fruit_vegetables

1.8E − 2 (2.0E − 1)

4.9E − 2

9.0E − 2

Root_vegetables

1.2E − 1 (3.0E − 1)

2.4E − 1

2.2E − 1

Grass (Intensive)

2.9E − 1 (5.0E − 1)

3.74E − 1

2.6E − 1

Grass (Extensive)

2.9E − 1 (1.0E0)

3.74E − 1

2.6E − 1

I

Beet_leaves

1.2E − 3 (1.0E − 1)

2.1E − 3

1.9E − 3

Leafy_vegetables

6.5E − 4 (1.0E − 1)

1.6E − 3

2.9E − 3

Maize

1.3E − 2 (1.0E − 1)

2.8E − 2**

4.5E − 2**

Beet

1.2E − 3 (1.0E − 1)

2.1E − 3

19E − 3

Corn_cobs

1.2E − 4 (1.0E − 1)

2.7E − 4

5.3E − 4

Fruit

9.5E − 4 (1.0E − 1)

1.8E − 3

1.8E − 3

Oats

5.5E − 4 (1.0E − 1)

1.3E − 4

2.4E − 3

Potatoes

2.1E − 2 (1.0E − 1)***

  

Rye

5.5E − 4 (1.0E − 1)

1.2E − 4

2.4E − 3

Spring_barley

5.5E − 4 (1.0E − 1)

1.2E − 4

2.4E − 3

Spring_wheat

5.5E − 4 (1.0E − 1)

1.2E − 4

2.5E − 3

Winter_barley

5.5E − 4 (1.0E − 1)

1.2E − 4

2.4E − 3

Winter_wheat

5.5E − 4 (1.0E − 1)

1.2E − 4

2.5E − 3

Berries

1.5E − 2 (1.0E − 1)***

  

Fruit_vegetables

5.0E − 3 (1.0E − 1)***

  

Root_vegetables

1.2E − 3 (1.0E − 1)

2.1E − 3

1.9E − 3

Grass (Intensive)

8.1E − 4 (1.0E − 1)

9.9E − 2

3.1E − 2

Grass (Extensive)

8.1E − 4 (1.0E − 1)

9.9E − 2

3.1E − 2

  1. *Untruncated lognormal distribution; **for cereal stem and shoots; ***No distribution, based on one value

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, A., Brown, J.E., Avila, R. et al. Redesigning the FDMT Food Chain Transfer Model: Now Probabilistically Enabled and Fully Flexible. Environ Model Assess 27, 311–326 (2022). https://doi.org/10.1007/s10666-021-09794-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-021-09794-2

Keywords

Navigation