Skip to main content

Advertisement

Log in

Effect of multiple climate change scenarios and predicted land-cover on soil erosion: a way forward for the better land management

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The ecosystem, biodiversity, and anthropological existence in the Chitral district are in danger due to the sediments and soil erosion stemming from the changes in the land-cover and climate. This research aims to practice the RUSLE model with the changes in the land-cover and climate in upcoming situations for 2030 and 2040 to evaluate soil erosion annually as per the spatial dissemination and the tendency of sediment yield. The multilayer perceptron (MLP), an artificial neural network (ANN), besides the Markov chain analysis was used to model upcoming land-cover. The Max Planck Institute model, which demonstrated a revised bias as well as downscaled grid size under the Representative Concentration Pathways (RCPs), was used for examining the future changes in the climate. The modeled land-cover showed that the areas that are primarily comprised of natural trees and shrubs were transformed largely to agriculture and build-up areas. The average rainfall in the future under different RCP situations was elevated compared to the rainfall through historical time. The continuous variability in the R and C factors affects the probable soil erosion rate and sediment yield. Under RCP8.5 for both future years of 2030 and 2040, the extreme erosion rate was assessed at around 500 and 550 t/ha/year. Additionally, under the different RCP scenarios in 2030 and 2040, the outcomes of sediment yield were more significant than the sediment yield through historical time. The results showed that lower regions of the Chitral district are at risk of amplified soil erosion and sediment yield presently, as shown by the historical data and in the future. The produced soil erosion maps using ArcGIS 10.2 can play a valuable role in managing sustainable development, conservation of the watershed of the Chitral River, and reducing soil loss. Effective measures to overcome these concerns and mitigate the possible effects need to be planned and practiced, particularly the decrease in the storage volume of the reservoirs situated on the river.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdo, H., & Salloum, J. (2017). Mapping the soil loss in Marqya basin: Syria using RUSLE model in GIS and RS techniques. Environmental Earth Sciences, 76(3), 114.

    Article  Google Scholar 

  • Anand, J., Gosain, A., & Khosa, R. (2018). Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Science of the Total Environment, 644, 503–519.

    Article  CAS  Google Scholar 

  • Ansari, A., & Golabi, M. H. (2019). Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands–A case study: Meighan Wetland. Iran. International Soil and Water Conservation Research, 7(1), 64–70.

    Article  Google Scholar 

  • Arunyawat, S., & Shrestha, R. P. (2016). Assessing land use change and its impact on ecosystem services in Northern Thailand. Sustainability, 8(8), 768.

    Article  Google Scholar 

  • Aslam, B., Maqsoom, A., Kazmi, Z. A., Sodangi, M., Anwar, F., Bakri, M. H., & Farooq, D. (2020). Effects of landscape changes on soil erosion in the built environment: Application of geospatial-based RUSLE technique. Sustainability, 12(15), 5898.

    Article  Google Scholar 

  • Atoma, H., Suryabhagavan, K., & Balakrishnan, M. (2020). Soil erosion assessment using RUSLE model and GIS in Huluka watershed. Central Ethiopia. Sustainable Water Resources Management, 6(1), 12.

    Article  Google Scholar 

  • Azimi Sardari, M. R., Bazrafshan, O., Panagopoulos, T., & Sardooi, E. R. (2019). Modeling the impact of climate change and land use change scenarios on soil erosion at the Minab Dam Watershed. Sustainability, 11(12), 3353.

    Article  Google Scholar 

  • Chhin, R., & Yoden, S. (2018). Ranking CMIP5 GCMs for model ensemble selection on regional scale: Case study of the Indochina Region. Journal of Geophysical Research: Atmospheres, 123(17), 8949–8974.

    Article  Google Scholar 

  • Chuenchum, P., Xu, M., & Tang, W. (2020a). Estimation of soil erosion and sediment yield in the Lancang-Mekong river using the modified revised universal soil loss equation and GIS techniques. Water, 12(1), 135.

    Article  Google Scholar 

  • Chuenchum, P., Xu, M., & Tang, W. (2020b). Predicted trends of soil erosion and sediment yield from future land use and climate change scenarios in the Lancang-Mekong River by using the modified RUSLE model. International Soil and Water Conservation Research, 8(3), 213–227.

    Article  Google Scholar 

  • Devatha, C., Deshpande, V., & Renukaprasad, M. (2015). Estimation of soil loss using USLE model for Kulhan Watershed, Chattisgarh-A case study. Aquatic Procedia, 4, 1429–1436.

    Article  Google Scholar 

  • Diyabalanage, S., Samarakoon, K., Adikari, S., & Hewawasam, T. (2017). Impact of soil and water conservation measures on soil erosion rate and sediment yields in a tropical watershed in the Central Highlands of Sri Lanka. Applied Geography, 79, 103–114.

    Article  Google Scholar 

  • Efthimiou, N., Lykoudi, E., & Karavitis, C. (2014). Soil erosion assessment using the RUSLE model and GIS. European Water, 47(15–30), 2014.

    Google Scholar 

  • Eroğlu, H., Çakır, G., Sivrikaya, F., & Akay, A. E. (2010). Using high resolution images and elevation data in classifying erosion risks of bare soil areas in the Hatila Valley Natural Protected Area, Turkey. Stochastic Environmental Research and Risk Assessment, 24(5), 699–704.

    Article  Google Scholar 

  • FAO. (2000). Strategic environmental assessment: An assessment of the impact of cassava production and processing on the environment and biodiversity (Paper presented at the FAO Proceedings of the validation forum on the global cassava development strategy).

  • FAO, I. (2015). Status of the world’s soil resources (SWSR)–main report. Food and agriculture organization of the United Nations and intergovernmental technical panel on soils, Rome, Italy, 650.

  • Ferreira, V., Panagopoulos, T., Andrade, R., Guerrero, C., & Loures, L. (2015). Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed. Solid Earth Sciences, 6(2), 383–392.

    Article  Google Scholar 

  • Fu, B., Zhao, W., Chen, L., Zhang, Q., Lü, Y., Gulinck, H., & Poesen, J. (2005). Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China. Land Degradation & Development, 16(1), 73–85.

    Article  Google Scholar 

  • Fu, K., & He, D. (2007). Analysis and prediction of sediment trapping efficiencies of the reservoirs in the mainstream of the Lancang River. Chinese Science Bulletin, 52(2), 134–140.

    Article  Google Scholar 

  • Ganasri, B., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961.

    Article  Google Scholar 

  • Gelagay, H. S., & Minale, A. S. (2016). Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. International Soil and Water Conservation Research, 4(2), 126–136.

    Article  Google Scholar 

  • Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., & Fieg, K. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 5(3), 572–597.

    Article  Google Scholar 

  • Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222(20–22), 3761–3772.

    Article  Google Scholar 

  • Guo, Y., Peng, C., Zhu, Q., Wang, M., Wang, H., Peng, S., & He, H. (2019). Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations and future challenges. Journal of environmental management, 250, 109403.

  • Hoang, L. P., Lauri, H., Kummu, M., Koponen, J., Van Vliet, M. T., Supit, I., & Ludwig, F. (2016). Mekong River flow and hydrological extremes under climate change. Hydrology and Earth System Sciences, 20(7), 3027–3041.

    Article  Google Scholar 

  • Hua-rong, Y., Zhi-feng, Y., & Bao-shan, C. (2006). Spatial analysis on soil erosion of Lancang River Watershed in Yunnan Province under the support of GIS. 地理研究, 25(3), 421–429.

  • Huang, Y., Wang, F., Li, Y., & Cai, T. (2014). Multi-model ensemble simulation and projection in the climate change in the Mekong River Basin. Part I: temperature. Environmental monitoring and assessment, 186(11), 7513–7523.

  • Johnson, F., Westra, S., Sharma, A., & Pitman, A. J. (2011). An assessment of GCM skill in simulating persistence across multiple time scales. Journal of Climate, 24(14), 3609–3623.

    Article  Google Scholar 

  • Kaffas, K., Hrissanthou, V., & Sevastas, S. (2018). Modeling hydromorphological processes in a mountainous basin using a composite mathematical model and ArcSWAT. CATENA, 162, 108–129.

    Article  Google Scholar 

  • Kamwi, J. M., Cho, M. A., Kaetsch, C., Manda, S. O., Graz, F. P., & Chirwa, P. W. (2018). Assessing the spatial drivers of land use and land cover change in the protected and communal areas of the Zambezi Region. Namibia. Land, 7(4), 131.

    Article  Google Scholar 

  • Karaburun, A. (2009). Estimating potential erosion risks in Corlu using the GIS based RUSLE method. Fresenius Environmental Bulletin, 18(9a), 1692–1700.

    CAS  Google Scholar 

  • Kayet, N., Pathak, K., Chakrabarty, A., & Sahoo, S. (2018). Evaluation of soil loss estimation using the RUSLE model and SCS-CN method in hillslope mining areas. International Soil and Water Conservation Research, 6(1), 31–42.

    Article  Google Scholar 

  • Kiem, A. S., Ishidaira, H., Hapuarachchi, H. P., Zhou, M. C., Hirabayashi, Y., & Takeuchi, K. (2008). Future hydroclimatology of the Mekong River basin simulated using the high-resolution Japan Meteorological Agency (JMA) AGCM. Hydrological Processes: An International Journal, 22(9), 1382–1394.

    Article  Google Scholar 

  • Licznar, P. (2004). Prognozowanie erozyjności deszczy w Polsce na podstawie miesięcznych sum opadów. Archiwum Ochrony Środowiska, 30(4), 29–39.

    Google Scholar 

  • Lufafa, A., Tenywa, M., Isabirye, M., Majaliwa, M., & Woomer, P. (2003). Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based Universal Soil Loss model. Agricultural Systems, 76(3), 883–894.

    Article  Google Scholar 

  • Mandle, L., Wolny, S., Bhagabati, N., Helsingen, H., Hamel, P., Bartlett, R., & Manley, D. (2017). Assessing ecosystem service provision under climate change to support conservation and development planning in Myanmar. PloS one, 12(9), e0184951.

  • Maqsoom, A., Aslam, B., Hassan, U., Kazmi, Z. A., Sodangi, M., Tufail, R. F., & Farooq, D. (2020). Geospatial assessment of soil erosion intensity and sediment yield using the revised universal soil loss equation (RUSLE) model. ISPRS International Journal of Geo-Information, 9(6), 356.

    Article  Google Scholar 

  • Mas, J.-F., Kolb, M., Paegelow, M., Olmedo, M. T. C., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51, 94–111.

    Article  Google Scholar 

  • Mehran, A., AghaKouchak, A., & Phillips, T. J. (2014). Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. Journal of Geophysical Research: Atmospheres, 119(4), 1695–1707.

    Article  Google Scholar 

  • Mitasova, H., Mitas, L., Brown, W. M., & Johnston, D. M. (1999). Terrain modeling and soil erosion simulations for Fort Hood and Fort Polk test areas. University of Illinois at Urbana-Champaign.

    Google Scholar 

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., & Kram, T. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.

    Article  CAS  Google Scholar 

  • Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A., & Ramirez-Villegas, J. (2020). High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Scientific Data, 7(1), 1–14.

    Article  Google Scholar 

  • Navarro-Racines, C. E., & Tarapues, J. (2015). Bias-correction in the CCAFS-Climate Portal: A description of methodologies.

  • Nor, A. N. M., Corstanje, R., Harris, J. A., & Brewer, T. (2017). Impact of rapid urban expansion on green space structure. Ecological Indicators, 81, 274–284.

    Article  Google Scholar 

  • Nord, G., & Esteves, M. (2005). PSEM_2D: A physically based model of erosion processes at the plot scale. Water resources research, 41(8).

  • Norris, J. R. (1998). Markov chains: Cambridge university press.

  • Olmedo, M. T. C., Pontius, R. G. Jr., Paegelow, M., & Mas, J.-F. (2015). Comparison of simulation models in terms of quantity and allocation of land change. Environmental Modelling & Software, 69, 214–221.

    Article  Google Scholar 

  • Ozcan, A. U., Erpul, G., Basaran, M., & Erdogan, H. E. (2008). Use of USLE/GIS technology integrated with geostatistics to assess soil erosion risk in different land uses of Indagi Mountain Pass—Cankırı. Turkey. Environmental Geology, 53(8), 1731–1741.

    Article  Google Scholar 

  • Peng, J., Li, D., & Zhang, Y. (2007). Analysis of spatial characteristics of soil erosion in mountain areas of northwestern Yunnan based on GIS and RUSLE. Journal of Mountain Science, 25(5), 548–556.

    Google Scholar 

  • Pérez-Vega, A., Mas, J.-F., & Ligmann-Zielinska, A. (2012). Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environmental Modelling & Software, 29(1), 11–23.

    Article  Google Scholar 

  • Plangoen, P., Babel, M. S., Clemente, R. S., Shrestha, S., & Tripathi, N. K. (2013). Simulating the impact of future land use and climate change on soil erosion and deposition in the Mae Nam Nan sub-catchment. Thailand. Sustainability, 5(8), 3244–3274.

    Article  Google Scholar 

  • Polykretis, C., Alexakis, D. D., Grillakis, M. G., & Manoudakis, S. (2020). Assessment of intra-annual and inter-annual variabilities of soil erosion in Crete Island (Greece) by incorporating the Dynamic “Nature” of R and C-Factors in RUSLE modeling. Remote Sensing, 12(15), 2439.

    Article  Google Scholar 

  • Raghavan, S. V., Liu, J., Nguyen, N. S., Vu, M. T., & Liong, S.-Y. (2018). Assessment of CMIP5 historical simulations of rainfall over Southeast Asia. Theoretical and Applied Climatology, 132(3–4), 989–1002.

    Article  Google Scholar 

  • Rahman, M. R., Shi, Z., & Chongfa, C. (2009). Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecological Modelling, 220(13–14), 1724–1734.

    Article  Google Scholar 

  • Ramirez-Villegas, J., & Jarvis, A. (2010). Downscaling global circulation model outputs: The delta method decision and policy analysis Working Paper No. 1. Policy Analysis, 1, 1–18.

  • Rangsiwanichpong, P., Kazama, S., & Gunawardhana, L. (2018). Assessment of sediment yield in Thailand using revised universal soil loss equation and geographic information system techniques. River Research and Applications, 34(9), 1113–1122.

    Article  Google Scholar 

  • Renard, K., Foster, G., & Weesies, G. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture handbook (703).

  • Ricker, M. C., Odhiambo, B. K., & Church, J. M. (2008). Spatial analysis of soil erosion and sediment fluxes: A paired watershed study of two Rappahannock River tributaries, Stafford County. Virginia. Environmental Management, 41(5), 766–778.

    Google Scholar 

  • Ruan, Y., Liu, Z., Wang, R., & Yao, Z. (2019). Assessing the performance of CMIP5 GCMs for projection of future temperature change over the lower Mekong Basin. Atmosphere, 10(2), 93.

    Article  Google Scholar 

  • Ruangrassamee, P., Khamkong, A., & Chuenchum, P. (2015). Assessment of precipitation simulations from CMIP5 climate models in Thailand. Paper presented at the The 3rd EIT International Conference on water Resource Engineering.

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science.

  • Schuol, J., Abbaspour, K. C., Srinivasan, R., & Yang, H. (2008). Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. Journal of Hydrology, 352(1–2), 30–49.

    Article  Google Scholar 

  • Sharma, A., Tiwari, K. N., & Bhadoria, P. (2011). Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environmental Monitoring and Assessment, 173(1–4), 789–801.

    Article  Google Scholar 

  • Singh, G., & Panda, R. K. (2017). Grid-cell based assessment of soil erosion potential for identification of critical erosion prone areas using USLE, GIS and remote sensing: A case study in the Kapgari watershed, India. International Soil and Water Conservation Research, 5(3), 202–211.

    Article  Google Scholar 

  • Tangang, F., Santisirisomboon, J., Juneng, L., Salimun, E., Chung, J., Supari, S., & Singhruck, P. (2019). Projected future changes in mean precipitation over Thailand based on multi-model regional climate simulations of CORDEX Southeast Asia. International Journal of Climatology, 39(14), 5413–5436.

    Article  Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498.

    Article  Google Scholar 

  • Teng, H., Liang, Z., Chen, S., Liu, Y., Rossel, R. A. V., Chappell, A., & Shi, Z. (2018). Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Science of the Total Environment, 635, 673–686.

    Article  CAS  Google Scholar 

  • Terranova, O., Antronico, L., Coscarelli, R., & Iaquinta, P. (2009). Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology, 112(3–4), 228–245.

    Article  Google Scholar 

  • Thuy, H. T., & Lee, G. (2017). Soil loss vulnerability assessment in the Mekong River Basin. 한국지반환경공학회 논문집, 18(1), 37–47.

  • Ullah, S., Ali, A., Iqbal, M., Javid, M., & Imran, M. (2018). Geospatial assessment of soil erosion intensity and sediment yield: A case study of Potohar Region. Pakistan. Environmental Earth Sciences, 77(19), 705.

    Article  Google Scholar 

  • Vaezi, A. R., Abbasi, M., Keesstra, S., & Cerdà, A. (2017). Assessment of soil particle erodibility and sediment trapping using check dams in small semi-arid catchments. CATENA, 157, 227–240.

    Article  Google Scholar 

  • van Vliet, J., Bregt, A. K., & Hagen-Zanker, A. (2011). Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecological Modelling, 222(8), 1367–1375.

    Article  Google Scholar 

  • Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. S. (2002). Modeling the spatial dynamics of regional land use: The CLUE-S model. Environmental Management, 30(3), 391–405.

    Article  Google Scholar 

  • Wijesundara, N., Abeysingha, N., & Dissanayake, D. (2018). GIS-based soil loss estimation using RUSLE model: A case of Kirindi Oya river basin, Sri Lanka. Modeling Earth Systems and Environment, 4(1), 251–262.

    Article  Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: A guide to conservation planning: Department of Agriculture, Science and Education Administration.

  • Yang, D., Kanae, S., Oki, T., Koike, T., & Musiake, K. (2003). Global potential soil erosion with reference to land use and climate changes. Hydrological Processes, 17(14), 2913–2928.

    Article  Google Scholar 

  • Yao, H., Yang, Z., & Cui, B. (2005). Soil erosion and its environmental background at Lancang Basin of Yunnan Province. Bulletin of Soil and Water Conservation, 25, 5–14.

    Google Scholar 

  • Zhou, Q., Yang, S., Zhao, C., Cai, M., & Ya, L. (2014). A soil erosion assessment of the upper Mekong River in Yunnan Province. China. Mountain Research and Development, 34(1), 36–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Aslam.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, B., Khalil, U., Saleem, M. et al. Effect of multiple climate change scenarios and predicted land-cover on soil erosion: a way forward for the better land management. Environ Monit Assess 193, 754 (2021). https://doi.org/10.1007/s10661-021-09559-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09559-0

Keywords

Navigation