Advertisement

Methodological approach for the collection and simultaneous estimation of greenhouse gases emission from aquaculture ponds

  • Muthuraman Vasanth
  • Moturi MuralidharEmail author
  • Ramamoorthy Saraswathy
  • Arunachalam Nagavel
  • Jagabattula Syama Dayal
  • Marappan Jayanthi
  • Natarajan Lalitha
  • Periyamuthu Kumararaja
  • Koyadan Kizhakkedath Vijayan
Article

Abstract

Global warming/climate change is the greatest environmental threat of our time. Rapidly developing aquaculture sector is an anthropogenic activity, the contribution of which to global warming is little understood, and estimation of greenhouse gases (GHGs) emission from the aquaculture ponds is a key practice in predicting the impact of aquaculture on global warming. A comprehensive methodology was developed for sampling and simultaneous analysis of GHGs, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from the aquaculture ponds. The GHG fluxes were collected using cylindrical acrylic chamber, air pump, and tedlar bags. A cylindrical acrylic floating chamber was fabricated to collect the GHGs emanating from the surface of aquaculture ponds. The sampling methodology was standardized and in-house method validation was established by achieving linearity, accuracy, precision, and specificity. GHGs flux was found to be stable at 10 ± 2 °C of storage for 3 days. The developed methodology was used to quantify GHGs in the Pacific white shrimp Penaeus vannamei and black tiger shrimp Penaeus monodon culture ponds for a period of 4 months. The rate of emission of carbon dioxide was found to be much greater when compared to other two GHGs. Average GHGs emission in gha−1 day−1 during the culture was comparatively high in P.vannamei culture ponds.

Keywords

Aquaculture ponds Greenhouse gases Floating chamber GHGs analytical method validation P.vannamei P.monodon 

Notes

Acknowledgments

The authors are thankful to present and former Directors of Central Institute of Brackishwater Aquaculture (CIBA) and funding from National Innovations in Climate Resilient Agriculture (NICRA) project of Indian Council of Agriculture Research (ICAR).

References

  1. Adhya, T. K., Rath, A. K., Gupta, P. K., Rao, V. R., Das, S. N., Parida, K., Parashar, D. C., & Sethunathan, N. (1994). Methane emission from flooded rice paddy fields under irrigated conditions. Biol. Fert. Soils, 18, 245–248.CrossRefGoogle Scholar
  2. Anonymous (2015).Deccan Chronicle, Kochi edition, July 3, 2015, p. 13.Google Scholar
  3. Avnimelech, Y., & Ritvo, G. (2003). Shrimp and fish pond soils: processes and management. Aquaculture, 220, 549–567.CrossRefGoogle Scholar
  4. Billett, M. F., & Moore, T. R. (2007). Supersaturation and evasion of CO2 and CH4 in surface waters at MerBleue peatland, Canada. Hydrol.Process., 22(12), 2044–2054. doi: 10.1002/hyp.6805.CrossRefGoogle Scholar
  5. Borges, A. V., Vanderborght, J. P., Schiettecatte, L. F., Gazeau, F., Ferron - Smith, S., Delille, B., & Frankignoulle, M. (2004). Variability of gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries, 27, 593–603.CrossRefGoogle Scholar
  6. Boyd, C. E., Wood, C. W., Chaney, P., & Queiroz, J. F. (2010). Role of aquaculture pond sediments in sequestration of annual global carbon emissions. Environmental Pollution, 158, 2,537–2,540.CrossRefGoogle Scholar
  7. Brook, E. J., Sowers, T., & Orchardo, J. (1996). Rapid variation in atmospheric methane concentration during past 110,000 years. Science, 273, 1087–1990.CrossRefGoogle Scholar
  8. Cole, J. J., Prairie, Y. T., Carcao, N. F., Mc DSowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., & Melack, J. (2007). Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 10, 171–184.CrossRefGoogle Scholar
  9. FAO. (2014). The State of World Fisheries and Aquaculture. Rome.Google Scholar
  10. Hu, Z., Lee, J. W., Chandran, K., Kim, S., & Khanal, S. K. (2012). Nitrous oxide (N2O) emission from aquaculture: a review. Environmental Science & Technology, 46(12), 6470–6480.CrossRefGoogle Scholar
  11. IPCC (2007). Climate change 2007: the physical science basis. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (p. 996). Cambridge and New York: Cambridge University Press.Google Scholar
  12. IPCC (2014). In T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda, & T. G. Troxler (Eds.), 2013 supplement to the 2006 IPCC guidelines for National Greenhouse Gas Inventories: wetlands. Published: IPCC, Switzerland.Google Scholar
  13. Jackson, M. L. (1973). Soil chemical analysis. Delhi: Prentice hall of India Pvt Ltd.Google Scholar
  14. Laurion, I., Warwick, F. V., Macintyre, S., Retamal, L., Dupont, C., Francus, P., & Pienitz, R. (2010). Arability in greenhouse gas emissions from permafrost thaw ponds. Limnol.Oceanogr., 55(1), 115–133.CrossRefGoogle Scholar
  15. Mer, J. L., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37, 25–50.CrossRefGoogle Scholar
  16. Piper, C. S. (1966). Soil and plant analysis. Bombay: Hans Publishers.Google Scholar
  17. Purvaja, R., & Ramesh, R. (2001). Natural and anthropogenic methane emission from wetlands of South India. Environ. Management, 27, 547–557.CrossRefGoogle Scholar
  18. Purvaja, R., Ramesh, R., & Frenzel, P. (2004). Plant mediated methane emission from an Indian mangrove. Global change biology., 10(11), 1825–1834.CrossRefGoogle Scholar
  19. Reay, D., Smith, K., & Hewitt, C. (2007). Methane: importance, sources and sinks. In D. Reay et al. (Eds.), Greenhouse gas sinks (pp. 143–151). Wallingford: CAB International.CrossRefGoogle Scholar
  20. Robertson, K. (1990). Emissions of N2O in Sweden natural and anthropogenic sources. Ambio, 20(3–4), 151–155.Google Scholar
  21. Saggar, S., Andrew, R. M., Tate, K. R., Hedley, C. B., Rodda, N. J., & Townsend, J. A. (2004). Modelling nitrous oxide emissions from dairy grazed pasture. Nutrient cycling in Agrosystems, 68, 243–255.CrossRefGoogle Scholar
  22. Singh, S. N., & Tyagi, L. (2009). Nitrous oxide: sources, sinks and mitigation strategies. In A. I. Sheldon & E. P. Barnhart (Eds.), Nitrous oxide emissions research progress (pp. 127–150). New York: Nova Science Publisher.Google Scholar
  23. Smith, K. A., Dobbie, K. E., Ball, B. C., Bakken, L. R., Sitaula, B. K., Hansen, S., Brumme, R., Borken, W., Christensen, S., Prieme, A., Fowler, D., Macdonald, J. A., Skiba, U., Klemedtsson, L., Kasimir-Klemedtsson, A., Degorska, A., & Orlanski, P. (2000). Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Global Change Biology, 6, 791–803.CrossRefGoogle Scholar
  24. Sobek, S.L., Tranvik, J. & J.J. Cole. (2005). Temperature independence of carbon dioxide supersaturation in global lakes.Glob.Biogeochem, Cycles 19: GB 2003, doi: 10.1029/2004GB002264.Google Scholar
  25. Topp, E., & Pattey, E. (1997). Soils as sources and sinks for atmospheric methane. Canadian Journal of Soil Science, 77, 167–178.CrossRefGoogle Scholar
  26. Walkley, A., & Black, C. A. (1934). An examination of the Degtijareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 93–101.CrossRefGoogle Scholar
  27. Williams, J., & Crutzen, P. J. (2010). Nitrous oxide from aquaculture. Nature Geoscience, 3(3), 143–143.CrossRefGoogle Scholar
  28. Zhang, J., Song, C., & Yang, W. (2005). Cold season CH4, CO2 and N2O fluxes from freshwater marshes in northeast China. Chemosphere, 59, 1703–1705.CrossRefGoogle Scholar
  29. Zhu, L., Che, X., Liu, H., Liu, X., Liu, C., Chen, X., & Shi, X. (2015). Greenhouse gas emissions and comprehensive greenhouse effect potential of Megalobrama amblycephala culture pond ecosystems in a 3-month growing season. Aquaculture International, 1–10.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Muthuraman Vasanth
    • 1
  • Moturi Muralidhar
    • 1
    Email author
  • Ramamoorthy Saraswathy
    • 1
  • Arunachalam Nagavel
    • 1
  • Jagabattula Syama Dayal
    • 1
  • Marappan Jayanthi
    • 1
  • Natarajan Lalitha
    • 1
  • Periyamuthu Kumararaja
    • 1
  • Koyadan Kizhakkedath Vijayan
    • 1
  1. 1.ICAR-Central Institute of Brackishwater AquacultureChennaiIndia

Personalised recommendations