Skip to main content
Log in

Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Root-knot nematodes (Meloidogyne spp.) are important pests of numerous crops worldwide. Some members of this genus have a quarantine status, and accurate species identification is required to prevent further spreading. DNA barcoding is a method for organism identification in non-complex DNA backgrounds based on informative motifs in short DNA stretches (≈600 bp). As part of the EU 7th Framework project QBOL, 15 Meloidogyne species were chosen to compare the resolutions offered by two typical DNA barcoding loci, COI and COII, with the distinguishing signals produced by two ribosomal DNA genes (small and large subunit rDNA; SSU ≈ 1,700 and LSU ≈ 3,400 bp). None of the four markers distinguished between the tropical species Meloidogyne incognita, M. javanica and M. arenaria. Taking P ID (Liberal) values ≥0.93 as a measure for species delimitation, the four mtDNA and rDNA markers performed well for the tropical Meloidogyne species complex, M. enterolobii, M. hapla, and M. maritima. Within cluster III A (Holterman et al. Phytopathology, 99, 227–235, 2009), SSU rDNA did not offer resolution at species level. Both mtDNA loci COI and COII did, whereas for LSU rDNA a longer fragment (≥700 bp) is required. The high level of mitochondrial heteroplasmy recently reported for M. chitwoodi (Humphreys-Pereira and Elling Nematology, 15, 315–327, 2013) was not found in the populations under investigation, suggesting this could be a regional phenomenon. For identification of RKNs, we suggest the combined use of SSU rDNA with one of three other markers presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blaxter, M. L. (2004). The promise of DNA taxonomy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359, 669–679.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blaxter, M. L., De Ley, P., Garey, J. R., Liu, L. X., Scheldeman, P., Vierstraete, A., et al. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature, 392, 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Blok, V. C., & Powers, T. O. (2009). Biochemical and molecular identification. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot nematodes (pp. 98–118). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • Blok, V. C., Phillips, M. S., & Fargette, M. (1997). Comparison of sequences from the ribosomal DNA intergenic region of Meloidogyne mayaguensis and other major tropical root-knot nematodes. Journal of Nematology, 29, 16–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonants, P., Groenewald, E., Rasplus, J. Y., Maes, M., De Vos, P., Frey, J. E., et al. (2010). QBOL: a new EU project focusing on DNA barcoding of quarantine organisms. OEPP/EPPO Bulletin, 40, 30–33.

    Article  Google Scholar 

  • Calvignac, S., Konecny, L., Malard, F., & Douady, C. J. (2011). Preventing the pollution of mitochondrial datasets with nuclear mitochondrial paralogs (numts). Mitochondrion, 11, 246–254.

    Article  CAS  PubMed  Google Scholar 

  • Derycke, S., Remerie, T., Vierstraete, A., Backeljau, T., van Fleteren, J., Vincx, M., et al. (2005). Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Marine Ecology-Progress Series, 300, 91–103.

    Article  CAS  Google Scholar 

  • Derycke, S., Backeljau, T., Vlaeminck, C., Vierstraete, A., van Fleteren, J., Vincx, M., et al. (2006). Seasonal dynamics of population genetic structure in cryptic taxa of the Pellioditis marina complex (Nematoda : Rhabditida). Genetica, 128, 307–321.

    Article  CAS  PubMed  Google Scholar 

  • Derycke, S., Backeljau, T., Vlaeminck, C., Vierstraete, A., van Fleteren, J., Vincx, M., et al. (2007). Spatiotemporal analysis of population genetic structure in Geomonhystera disjuncta (Nematoda, Monhysteridae) reveals high levels of molecular diversity. Marine Biology, 151, 1799–1812.

    Article  Google Scholar 

  • Derycke, S., De Ley, P., Tandigan De Ley, I., Holovachov, O., Rigaux, A., & Moens, T. (2010a). Linking DNA sequences to morphology: cryptic diversity and population genetic structure in the marine nematode Thoracostoma trachygaster (Nematoda, Leptosomatidae). Zoologica Scripta, 39, 276–289.

    Article  Google Scholar 

  • Derycke, S., Vanaverbeke, J., Rigaux, A., Backeljau, T., & Moens, T. (2010b). Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PLoS ONE, 5, e13716.

    Article  PubMed Central  PubMed  Google Scholar 

  • Floyd, R., Lima, J., DeWaard, J., Humble, L., & Hanner, R. (2010). Common goals: policy implications of DNA barcoding as a protocol for identification of arthropod pests. Biological Invasions, 12, 2947–2954.

    Article  Google Scholar 

  • Frey, J. E., & Frey, B. (2004). Origin of intra-individual variation in MR-amplified mitochondrial cytochrome oxidase I of Thrips tabaci (Thysanoptera : Thripidae): mitochondrial heteroplasmy or nuclear integration? Hereditas, 140, 92–98.

    Article  PubMed  Google Scholar 

  • Giblin-Davis, R. M., Hazir, S., Center, B. J., Ye, W., Keskin, N., Thorp, R. W., et al. (2005). Bursaphelenchus anatolius n. sp (Nematoda : Parasitaphelenchidae), an associate of bees in the genus Halictus. Journal of Nematology, 37, 336–342.

    PubMed Central  PubMed  Google Scholar 

  • Gibson, T., Blok, V. C., Phillips, M. S., Hong, G., Kumarasinghe, D., Riley, I. T., et al. (2007). The mitochondrial subgenomes of the nematode Globodera pallida are mosaics: evidence of recombination in an animal mitochondrial genome. Journal of Molecular Evolution, 64, 463–471.

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Gutiérrez, C., Cantalapiedra-Navarrete, C., Decraemer, W., Vovlas, N., Prior, T., Rius, J. E. P., et al. (2012). Phylogeny, diversity, and species delimitation in some species of the Xiphinema americanum-group complex (Nematoda: Longidoridae), as inferred from nuclear and mitochondrial DNA sequences and morphology. European Journal of Plant Pathology, 134, 561–597.

    Article  Google Scholar 

  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hamilton, C. A., Hendrixson, B. E., Brewer, M. S., & Bond, J. E. (2014). An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: a case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Molecular Phylogenetics and Evolution, 71, 79–93.

    Article  CAS  PubMed  Google Scholar 

  • Hebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270, 313–321.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov, O., et al. (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution, 23, 1792–1800.

    Article  CAS  PubMed  Google Scholar 

  • Holterman, M., Rybarczyk, K., Van den Elsen, S., Van Megen, H., Mooyman, P., Santiago, R. P., et al. (2008). A ribosomal DNA-based framework for the detection and quantification of stress-sensitive nematode families in terrestrial habitats. Molecular Ecology Resources, 8, 23–34.

    Article  CAS  PubMed  Google Scholar 

  • Holterman, M., Karssen, G., van den Elsen, S., van Megen, H., Bakker, J., & Helder, J. (2009). Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology, 99, 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Holterman, M., Oggenfuss, M., Frey, J. E., & Kiewnick, S. (2012). Evaluation of high-resolution melting curve analysis as a new tool for root-knot nematode diagnostics. Journal of Phytopathology, 160, 59–66.

    Article  CAS  Google Scholar 

  • Hoolahan, A. H., Blok, V. C., Gibson, T., & Dowton, M. (2012). A comparison of three molecular markers for the identification of populations of Globodera pallida. Journal of Nematology, 44, 7–17.

    PubMed Central  PubMed  Google Scholar 

  • Hu, M., Hoglund, J., Chilton, N. B., Zhu, X. Q., & Gasser, R. B. (2002). Mutation scanning analysis of mitochondria cytochrome c oxidase subunit 1 reveals limited gene flow among bovine lungworm subpopulations in Sweden. Electrophoresis, 23, 3357–3363.

    Article  CAS  PubMed  Google Scholar 

  • Humphreys-Pereira, D., & Elling, A. (2013). Intraspecific variability and genetic structure in Meloidogyne chitwoodi from the USA. Nematology, 15, 315327.

    Article  Google Scholar 

  • Kiewnick, S., Holterman, M., Helder, H., & Frey, J. E. (2011). QBOL—barcoding as a new tool for identification of quarantine nematodes and their close relatives. Phytopathology, 101, S90.

    Article  Google Scholar 

  • Kiewnick, S., Braun-Kiewnick, A., & Frey, J. E. (2013a). Development and validation of a real-time PCR assay for the detection and identification of the root-knot nematode Meloidogyne enterolobii, a new EPPO A2 list quarantine organism. Journal of Plant Diseases and Protection, 3, 142.

    Google Scholar 

  • Kiewnick, S., Wolf, S., Willareth, M., & Frey, J. E. (2013b). Identification of the tropical root-knot nematode species Meloidogyne incognita, M. javanica and M. arenaria using a multiplex PCR assay. Nematology, 15, 891–894.

    Google Scholar 

  • Kumari, S., Decraemer, W., De Luca, F., & Tiefenbrunner, W. (2010). Cytochrome c oxidase subunit 1 analysis of Xiphinema diversicaudatum, X. pachtaicum, X. simile and X. vuittenezi (Nematoda, Dorylaimida). European Journal of Plant Pathology, 127, 493–499.

    Article  CAS  Google Scholar 

  • Landa, B. B., Rius, J. E. P., Vovlas, N., Carneiro, R. M. D. G., Maleita, C. M. N., Abrantes, I. M., et al. (2008). Molecular characterization of Meloidogyne hispanica (Nematoda, Meloidogynidae) by phylogenetic analysis of genes within the rDNA in Meloidogyne spp. Plant Disease, 92, 1104–1110.

    Article  CAS  Google Scholar 

  • Liao, D. Q., Pavelitz, T., Kidd, J. R., Kidd, K. K., & Weiner, A. M. (1997). Concerted evolution of the tandemly repeated genes encoding human U2 snRNA (the RNU2 locus) involves vapid intrachromosomal homogenization and rare interchromosomal gene conversion. EMBO Journal, 16, 588–598.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luca, F., Vovlas, N., Lucarelli, G., Troccoli, A., Radicci, V., Fanelli, E., et al. (2013). Heterodera elachista the Japanese cyst nematode parasitizing corn in Northern Italy: integrative diagnosis and bionomics. European Journal of Plant Pathology, 136, 857–872.

    Article  CAS  Google Scholar 

  • Madani, M., Subbotin, S. A., Ward, L. J., Li, X., & De Boer, S. H. (2010). Molecular characterization of Canadian populations of potato cyst nematodes, Globodera rostochiensis and G. pallida using ribosomal nuclear RNA and cytochrome b genes. Canadian Journal of Plant Pathology, 32, 252–263.

    Article  CAS  Google Scholar 

  • Masters, B. C., Fan, V., & Ross, H. A. (2011). Species delimitation—a geneious plugin for the exploration of species boundaries. Molecular Ecology Resources, 11, 154–157.

    Article  PubMed  Google Scholar 

  • Meldal, B. H. M., Debenham, N. J., De Ley, P., Tandigan De Ley, I., Van Fleteren, J. R., Vierstraete, A. R., et al. (2007). An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Molecular Phylogenetics and Evolution, 42, 622–636.

    Article  CAS  PubMed  Google Scholar 

  • Messing, J. (1983). New M13 vectors for cloning. Methods in Enzymology, 101, 20–78.

    Article  CAS  PubMed  Google Scholar 

  • Nadler, S. A., & Hudspeth, D. S. S. (2000). Phylogeny of the ascaridoidea (Nematoda : Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. Journal of Parasitology, 86, 380–393.

    Article  CAS  PubMed  Google Scholar 

  • Otranto, D., Testini, G., De Luca, F., Hu, M., Shamsi, S., & Gasser, R. B. (2005). Analysis of genetic variability within Thelazia callipaeda (Nematoda : Thelazioidea) from Europe and Asia by sequencing and mutation scanning of the mitochondrial cytochrome c oxidase subunit 1 gene. Molecular and Cellular Probes, 19, 306–313.

    Article  CAS  PubMed  Google Scholar 

  • Ratnasingham, S., & Hebert, P. D. N. (2007). BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes, 7, 355–364.

  • Rosenberg, N. A. (2007). Statistical tests for taxonomic distinctiveness from observations of monophyly. Evolution, 61, 317–323.

    Article  PubMed  Google Scholar 

  • Ross, H. A., Murugan, S., & Li, W. L. S. (2008). Testing the reliability of genetic methods of species identification via simulation. Systematic Biology, 57, 216–230.

    Article  PubMed  Google Scholar 

  • Rybarczyk-Mydłowska, K., Mooyman, P., van Megen, H., van den Elsen, S., Vervoort, M., Veenhuizen, P., et al. (2012). Small subunit ribosomal DNA-based phylogenetic analysis of foliar nematodes (Aphelenchoides spp.) and their quantitative detection in complex DNA backgrounds. Phytopathology, 102, 1153–1160.

    Article  PubMed  Google Scholar 

  • Subbotin, S. A., Halford, P. D., Warry, A., & Perry, R. N. (2000). Variations in ribosomal DNA sequences and phylogeny of Globodera parasitising solanaceous plants. Nematology, 2, 591–604.

    Article  CAS  Google Scholar 

  • Subbotin, S. A., Vovlas, N., Crozzoli, R., Sturhan, D., Lamberti, F., Moens, M., et al. (2005). Phylogeny of Criconematina Siddiqi, 1980 (Nematoda : Tylenchida) based on morphology and D2-D3 expansion segments of the 28S-rRNA gene sequences with application of a secondary structure model. Nematology, 7, 927–944.

    Article  CAS  Google Scholar 

  • Tandigan De Ley, I., De Ley, P., Vierstraete, A., Karssen, G., Moens, M., & Van Fleteren, J. (2002). Phylogenetic analyses of Meloidogyne small subunit rDNA. Journal of Nematology, 34, 319–327.

    Google Scholar 

  • Toumi, F., Waeyenberge, L., Viaene, N., Dababat, A., Nicol, J. M., Ogbonnaya, F., et al. (2013). Development of two species-specific primer sets to detect the cereal cyst nematodes Heterodera avenae and Heterodera filipjevi. European Journal of Plant Pathology, 136, 613–624.

    Article  CAS  Google Scholar 

  • Van Megen, H., Van den Elsen, S., Holterman, M., Karssen, G., Mooyman, P., Bongers, T., et al. (2009). A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology, 11, 927–950.

    Article  Google Scholar 

  • Vervoort, M. T. W., Vonk, J. A., Mooijman, P. J. W., Van den Elsen, S. J. J., Van Megen, H. H. B., Veenhuizen, P., et al. (2012). SSU ribosomal DNA-based monitoring of nematode assemblages reveals distinct seasonal fluctuations within evolutionary heterogeneous feeding guilds. PLoS ONE, 7(10), e47555. doi:10.1371/journal.-pone.0047555.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vovlas, N., Trisciuzzi, N., Troccoli, A., Luca, F., Cantalapiedra-Navarrete, C., & Castillo, P. (2013). Integrative diagnosis and parasitic habits of Cryphodera brinkmani a non-cyst forming heteroderid nematode intercepted on Japanese white pine bonsai trees imported into Italy. European Journal of Plant Pathology, 135, 717–726.

    Article  Google Scholar 

  • Wesemael, W. M. L., Viaene, N., & Moens, M. (2011). Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology, 13, 3–16.

    Article  Google Scholar 

  • Wuyts, J., De Rijk, P., Van de Peer, Y., Pison, G., Rousseeuw, P., & De Wachter, R. (2000). Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA. Nucleic Acids Research, 28, 4698–4708.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye, W., Giblin-Davis, R. M., Davies, K. A., Purcell, M. F., Scheffer, S. J., Taylor, G. S., et al. (2007). Molecular phylogenetics and the evolution of host plant associations in the nematode genus Fergusobia (Tylenchida: Fergusobiinae). Molecular Phylogenetics and Evolution, 45, 123–141.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Z. Q., Ye, W. M., Giblin-Davis, R. M., Li, D., & Thomas, W. K. (2008). Morphological and molecular analysis of six aphelenchoidoids from Australian conifers and their relationship to Bursaphelenchus (Fuchs, 1937). Nematology, 10, 663–678.

    Article  CAS  Google Scholar 

  • Zijlstra, C., Lever, A. E. M., Uenk, B. J., & van Silfout, C. H. (1995). Differences between ITS regions of isolates of root-knot nematodes Meloidogyne hapla and M. chitwoodi. Phytopathology, 85, 1231–1237.

Download references

Acknowledgments

We would like to express our thanks to all colleagues who provided nematode material for this study. Funding was supplied by EU 7th Framework project QBOL (KBBE-2008-1-4-01). Initial work on the COI gene was funded by the Swiss State Secretariat for Education and Research (SER) as part of COST Action 872 (project nr. C07.0072). We also would like to acknowledge all colleagues from the QBOL project and our partner institutes for proving the reference material used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kiewnick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiewnick, S., Holterman, M., van den Elsen, S. et al. Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives. Eur J Plant Pathol 140, 97–110 (2014). https://doi.org/10.1007/s10658-014-0446-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0446-1

Keywords

Navigation