Educational Studies in Mathematics

, Volume 95, Issue 2, pp 143–161 | Cite as

Understanding gaps in research networks: using “spatial reasoning” as a window into the importance of networked educational research

  • Catherine D. Bruce
  • Brent Davis
  • Nathalie Sinclair
  • Lynn McGarvey
  • David Hallowell
  • Michelle Drefs
  • Krista Francis
  • Zachary Hawes
  • Joan Moss
  • Joanne Mulligan
  • Yukari Okamoto
  • Walter Whiteley
  • Geoff Woolcott
Article

Abstract

This paper finds its origins in a multidisciplinary research group’s efforts to assemble a review of research in order to better appreciate how “spatial reasoning” is understood and investigated across academic disciplines. We first collaborated to create a historical map of the development of spatial reasoning across key disciplines over the last century. The map informed the structure of our citation search and oriented an examination of connection across disciplines. Next, we undertook a network analysis that was based on highly cited articles in a broad range of domains. Several connection gaps—that is, apparent blockages, one-way flows, and other limitations on communications among disciplines—were identified in our network analysis, and it was apparent that these connection gaps may be frustrating efforts to understand the conceptual complexity and the educational significance of spatial reasoning. While these gaps occur between the academic disciplines that we evaluated, we selected a few examples for closer analysis. To illustrate how this lack of flow can limit development of the field of mathematics education, we selected cases where it is evident that researchers in mathematics education are not incorporating the important work of mathematicians, psychologists, and neuroscientists—and vice versa. Ultimately, we argue, a more pronounced emphasis on transdisciplinary (versus multidisciplinary or interdisciplinary) research might be timely, and perhaps even necessary, in the evolution of educational research.

Keywords

Spatial reasoning Network analysis Mathematics education Transdisciplinary approach 

References

  1. Ansari, D., & Coch, D. (2006). Bridges over troubled waters: Education and cognitive neuroscience. Trends in Cognitive Sciences, 10(4), 146–151.CrossRefGoogle Scholar
  2. Baars, B.J. (1995). Can physics provide a theory of consciousness? A review of Shadows of the Mind by Roger Penrose. Psyche, 2(8). Retrieved from http://horizons-2000.org/5.%20Mind%20and%20Metaphysics/Web%20papers/Bernard%20Baars,%20Review%20of%20Shadows%20of%20the%20Mind.htm
  3. Bishop, A. J. (1980). Spatial abilities and mathematics education—A review. Educational Studies in Mathematics, 11(3), 257–269. Retrieved from http://www.jstor.org/stable/3481801
  4. Blair, K. P., Rosenberg-Lee, M., Tsang, J. M., Schwartz, D. L., & Menon, V. (2012). Beyond natural numbers: Negative number representation in parietal cortex. Frontiers in Human Neuroscience, 6(7), 1–17.Google Scholar
  5. Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323, 892–895. doi:10.1126/science.1165821 CrossRefGoogle Scholar
  6. Bruce, C., Davis, B., Sinclair, N., and the Spatial Reasoning Study Group. (2015). A transdisciplinary review of research into spatial reasoning. Report to Social Sciences and Humanities Research Council of Canada.Google Scholar
  7. Bruce, C., Moss, J., Sinclair, N., Whiteley, W., Okamoto, Y., McGarvey, L., & Davis, B. (2013). Early-years spatial reasoning: Learning, teaching, and research implications. In B. Davis (Ed.), Linking research and practice. Symposium conducted at the meeting of the NCTM research presession, Denver, CO.Google Scholar
  8. Butterworth, B. (1999). The mathematical brain. New York: Macmillan.Google Scholar
  9. Bryant, P. E. (2008). Paper 5: Understanding spaces and its representation in mathematics. In T. Nune, P. Bryant, & A. Watson (Eds.), Key understandings in mathematics learning: a report to the Nuffeld Foundation. Retrieved 28.04.2013 from http://www.nuffeldfoundation.org/sites/default/files/P5.pdf.
  10. Choi, B. C., & Pak, A. W. (2006). Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clinical and Investigative Medicine. Medecine Clinique et Experimentale, 29(6), 351–364.Google Scholar
  11. Christodoulou, J. A., & Gaab, N. (2008). Using and misusing neuroscience in education-related research. Cortex, 45, 555–557.CrossRefGoogle Scholar
  12. Clements, D. H., Battista, M. T., & Sarama, J. (2001). Logo and geometry. Journal for research in mathematics education monograph series, 10. Reston: National Council of Teachers of Mathematics.Google Scholar
  13. Coles, A. (2014). Transitional devices. For the Learning of Mathematics, 34(2), 24–30.Google Scholar
  14. Davis, B., Francis, K., & Drefs, M. (2015). A history of the current curriculum. In B. Davis & the Spatial Reasoning Study Group (Eds.), Spatial reasoning in the early years: principles, assertions, and speculations (pp. 47–62). New York: Routledge.Google Scholar
  15. Davis, B., & Spatial Reasoning Study Group (Eds.). (2015). Spatial reasoning in the early years: principles, assertions, and speculations. New York: Routledge.Google Scholar
  16. Dehaene, S. (2011). The number sense: How the mind creates mathematics. Cambridge: Oxford University Press.Google Scholar
  17. Frick, A., Möhring, W., & Newcombe, N.S. (2014). Picturing perspectives: development of perspective-taking abilities in 4- to 8-year-olds. Frontiers in Psychology, 5. doi:10.3389/fpsyg.2014.00386
  18. Fu, T. Z. J., Song, Q., & Chiu, D. M. (2014). The academic social network. Scientometrics, 101, 203–239. doi:10.1007/s11192-014-1356-x CrossRefGoogle Scholar
  19. Galton, F. (1880). Visualised numerals. Nature, 21, 43–74.CrossRefGoogle Scholar
  20. Gattegno, C. (1965). Mathematics and imagery. Mathematics Teaching, 3(4), 22–24.Google Scholar
  21. Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121–169). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. Khan, S., Francis, K., & Davis, B. (2015). Accumulation of experience in a vast number of cases: Enactivism as a fit framework for the study of spatial reasoning in mathematics education. ZDM, 47(2), 269–279. doi:10.1007/s11858-014-0623-x CrossRefGoogle Scholar
  23. Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.Google Scholar
  24. Lattanzi, M. (1998). Transdisciplinarity: Stimulating synergies, integrating knowledge. UNESCO. Retrieved June 5, 2016, from http://unesdoc.unesco.org/images/0011/001146/114694eo.pdf
  25. Lyons, I., & Beilock, S. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256–261.CrossRefGoogle Scholar
  26. Lyons, I., Price, G., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1–6. Developmental Science, 17(5), 714–726.CrossRefGoogle Scholar
  27. McGarvey, L. (2012). What is the pattern? Criteria used by teachers and young children. Mathematical Thinking and Learning, 14(4), 310–337.CrossRefGoogle Scholar
  28. McManus, I. C. (2005). Symmetry and asymmetry in aesthetics and the arts. European Review, 13(Supplement 2), 157–180. doi:10.1017/S1062798705000736 CrossRefGoogle Scholar
  29. Moss, J., Hawes, Z., Naqvi, S., & Caswell, B. (2015). Adapting Japanese lesson study to enhance the teaching and learning of geometry and spatial reasoning in early years classrooms: A case study. ZDM, 47(3), 377–390.CrossRefGoogle Scholar
  30. Mottron, L., Dawson, M., & Soulières, I. (2009). Enhanced perception in savant syndrome: patterns, structure and creativity. Philosophical Transactions of the Royal Society, B: Biological Sciences, 364(1522), 1385–1391. doi:10.1098/rstb.2008.0333 CrossRefGoogle Scholar
  31. Mulligan, J., & Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33–49. doi:10.1007/BF03217544 CrossRefGoogle Scholar
  32. Mulligan, J. T., & Mitchelmore, M. C. (2013). Early awareness of mathematical pattern and structure. In L. D. English & J. T. Mulligan (Eds.), Reconceptualizing early mathematics learning (pp. 29–45). New York: Springer.CrossRefGoogle Scholar
  33. Newcombe, N. S. (2010). Picture this: Increasing math and science learning by improving spatial thinking. American Educator, 34(2), 29–35.Google Scholar
  34. Newcombe, N. S. (2013). Seeing relationships: Using spatial thinking to teach science, mathematics, and social studies. American Educator, 37(1), 26–31.Google Scholar
  35. Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. In J. S. Gero (Ed.), Studying visual and spatial reasoning for design creativity (pp. 179–192). Dordrecht: Springer.Google Scholar
  36. Ng, O., & Sinclair, N. (2015). Young children reasoning about symmetry in a dynamic geometry environment. ZDM – The International Journal on Mathematics Education, 51(3), 84–101.Google Scholar
  37. Western and Northern Canadian Protocol. (2007). Mathematics. Retrieved March 7, 2016, from https://www.wncp.ca/english/subjectarea/mathematics.aspx
  38. Ontario Ministry of Education. (2005). Grade 6 mathematics curriculum. Toronto: Ontario Education Ministry.Google Scholar
  39. Papic, M. M., Mulligan, J. T., & Mitchelmore, M. C. (2011). Assessing the development of preschoolers’ mathematical patterning. Journal for Research in Mathematics Education, 42(3), 237–269. Retrieved from http://www.jstor.org/stable/10.5951/jresematheduc.42.3.0237
  40. Perreault, A., Gurnsey, R., Dawson, M., Mottron, L., & Bertone, A. (2011). Increased sensitivity to mirror symmetry in autism. PloS One, 6(4), e19519. doi:10.1371/journal.pone.0019519 CrossRefGoogle Scholar
  41. Piaget, J. (1932/1997). The moral judgment of the child. New York: Free Press.Google Scholar
  42. Piaget, J., & B. Inhelder (1948/1967). The child’s conception of space. (F. J. Langdon & J. L. Lunzer, Trans.). New York: Norton.Google Scholar
  43. Presmeg, N. C. (1986). Visualisation and mathematical giftedness. Educational Studies in Mathematics, 17(3), 297–311. doi:10.1007/BF00305075 CrossRefGoogle Scholar
  44. Sasaki, Y., Vanduffel, W., Knutsen, T., Tyler, C., & Tootell, R. (2005). Symmetry activates extrastriate visual cortex in human and nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 3159–3163.CrossRefGoogle Scholar
  45. Schott, G. D. (2015). Neuroaesthetics: Exploring beauty and the brain. Brain, 138(8), 2451–2454.CrossRefGoogle Scholar
  46. Sinclair, N., & Bruce, C. D. (2014). Research forum: Spatial reasoning for young learners. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the joint meeting of PME 38 and PME-NA 36 (Vol. 1, pp. 173–203). Vancouver: PME.Google Scholar
  47. Sinclair, N., & Coles, A. (2015). ‘A trillion is after one hundred’: Early number and the development of symbolic awareness. In X. Sun, B. Kaur, & J. Novotná (Eds.), Proceedings of ICMI study 23” primary mathematics study on whole numbers (pp. 251–259). Macau: University of Macau. http://www.umac.mo/fed/ICMI23/doc/Proceedings_ICMI_STUDY_23_final.pdf
  48. Sinclair, N., & Jackiw, N. (2014). TouchCounts. Application for the iPad. Burnaby: Simon Fraser University.Google Scholar
  49. Spanner, D. (2001). Border crossings: Understanding the cultural and informational dilemmas of interdisciplinary scholars. The Journal of Academic Librarianship, 27(5), 352–360. doi:10.1016/S0099-1333(01)00220-8
  50. Sylwester, R. (1995). A celebration of neurons: An educator’s guide to the human brain. Alexandria: Association for Supervision and Curriculum Development. Retrieved from http://pratclif.com/brain/neurons.htm
  51. Tahta, D. (1990). Is there a geometric imperative? Mathematics Teaching, 129, 20–29.Google Scholar
  52. Trevarthen, C., & Delafield-Butt, J. (2013). Autism as a developmental disorder in intentional movement and affective engagement. Frontiers in Integrative Neuroscience, 7, 49. doi:10.3389/fnint.2013.00049 CrossRefGoogle Scholar
  53. Tsang, J. M., Blair, K. P., Bofferding, L., & Schwartz, D. L. (2015). Learning to “see” less than nothing: Putting perceptual skills to work for learning numerical structure. Cognition and Instruction, 33(2), 154–197.CrossRefGoogle Scholar
  54. Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. doi:10.1037/a0028446
  55. Van den Heuvel-Panhuizen, M., Elia, I., & Robitzch, A. (2014). Effects of reading picture books on kindergartners’ mathematics performance. Educational Psychology: An International Journal of Experimental Educational Psychology, 36(2), 323–346.CrossRefGoogle Scholar
  56. Van Eck, N. J. & Waltman, L. (2016). VOSviewer: Visualizing scientific landscapes. Retrieved from http://www.vosviewer.com
  57. Varma, S., & Schwartz, D. L. (2011). The mental representation of integers: An abstract-to-concrete shift in the understanding of mathematical concepts. Cognition, 121(3), 363–385.CrossRefGoogle Scholar
  58. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835. doi:10.1037/a0016127
  59. Warren, E., & Cooper, T. (2008). Generalizing the pattern rule for visual growth patterns: Actions that support 8 year olds’ thinking. Educational Studies in Mathematics, 67, 171–185.CrossRefGoogle Scholar
  60. Yanofsky, N. S., & Zelcer, M. (2015). The role of symmetry in mathematics. arXiv preprint arXiv:1502.07803.Google Scholar
  61. Zhao, D., & Strotmann, A. (2015). Analysis and visualization of citation networks. Chapel Hill: Morgan & Claypool. doi:10.2200/S00624ED1V01Y201501ICR039

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Catherine D. Bruce
    • 1
  • Brent Davis
    • 2
  • Nathalie Sinclair
    • 3
  • Lynn McGarvey
    • 4
  • David Hallowell
    • 5
  • Michelle Drefs
    • 2
  • Krista Francis
    • 2
  • Zachary Hawes
    • 6
  • Joan Moss
    • 7
  • Joanne Mulligan
    • 8
  • Yukari Okamoto
    • 5
  • Walter Whiteley
    • 9
  • Geoff Woolcott
    • 10
  1. 1.Trent UniversityPeterboroughCanada
  2. 2.University of CalgaryCalgaryCanada
  3. 3.Simon Fraser UniversityBurnabyCanada
  4. 4.University of AlbertaEdmontonCanada
  5. 5.University of CaliforniaSanta BarbaraUSA
  6. 6.University of Western OntarioLondonCanada
  7. 7.University of TorontoTorontoCanada
  8. 8.Macquarie UniversitySydneyAustralia
  9. 9.York UniversityTorontoCanada
  10. 10.Southern Cross UniversityEast LismoreAustralia

Personalised recommendations