Skip to main content
Log in

Circulating Zonulin Correlates with Density of Enteroviruses and Tolerogenic Dendritic Cells in the Small Bowel Mucosa of Celiac Disease Patients

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Impaired intestinal integrity, including increased permeability of the small bowel mucosa, has been shown in patients with celiac disease (CD) as well as with type 1 diabetes (T1D). Zonulin (ZO, pre-haptoglobin), a tight junction regulator, plays a particular role in the regulation of intestinal barrier function and in the pathogenesis of the above-mentioned diseases.

Aim

To investigate whether enteroviruses (EVs) and immunoregulatory cells are associated with intestinal permeability in patients with CD alone and with coexistent T1D.

Materials and Methods

Altogether 80 patients (mean age 10.68 ± 6.69 years) who had undergone small bowel biopsy were studied. Forty patients with functional dyspepsia and normal small bowel mucosa formed the control group. The circulating ZO level in sera was evaluated using ELISA. The densities of EV, FOXP3+ regulatory T cells (Tregs), indoleamine 2,3-dioxygenase (IDO+) dendritic cells (DCs) and glutamic acid dexarboxylase (GAD)65+ cells in small bowel mucosa were investigated by immunohistochemistry. The expression analysis of FOXP3, tight junction protein 1 (TJP1), gap junction (GJA1), IDO and CD103 genes was evaluated by real-time PCR.

Results

The ZO level was higher in CD patients compared to subjects with a normal small bowel mucosa, particularly in those with Marsh IIIc atrophy (p = 0.01), and correlated with the density of EV (r = 0.63; p = 0.0003) and IDO+ DCs (r = 0.58; p = 0.01) in the small bowel mucosa. The density of GAD65+ epithelial cells was correlated with the density of EV (r = 0.59; p = 0.03) and IDO+ DCs (r = 0.78; p = 0.004) in CD patients. The relative expression of FOXP3 mRNA in the small bowel mucosa tissue was significantly higher in patients with CD, compared to subjects with a normal mucosa, and correlated with the density of EV (r = 0.62; p = 0.017) as well as with the relative expression of IDO mRNA (r = 0.54; p = 0.019).

Conclusions

The CD is associated with elevation of the circulating ZO level, the value of which correlates with the density of EV in CD patients with severe atrophic changes in the small bowel mucosa, particularly in cases of concomitant T1D. The CD is also characterized by the close relationship of the density of GAD65+ epithelial cells with the EV, ZO level and IDO+ DCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sapone A, de Magistris L, Pietzak M, et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes. 2006;55:1443–1449.

    Article  CAS  PubMed  Google Scholar 

  2. Vaarala O, Atkinson MA, Neu J. The “perfect storm” for type 1 diabetes. The complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes. 2008;10:2555–2562.

    Article  Google Scholar 

  3. Visser J, Rozing J, Sapone A, Lammers K, Fasano A. Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms. Ann N Y Acad Sci. 2009;1165:195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fasano A, Not T, Wang W, et al. Zonulin, a newly discovered modulator of intestinal permeability and its expression in celiac disease. Lancet. 2000;355:1518–1519.

    Article  CAS  PubMed  Google Scholar 

  5. Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011;91:151–175.

    Article  CAS  PubMed  Google Scholar 

  6. Vaarala O. Leaking gut in type 1 diabetes. Curr Opin Gastroenterol. 2008;24:701–706.

    Article  PubMed  Google Scholar 

  7. Tauriainen S, Oikarinen S, Oikarinen M, Hyöty H. Enteroviruses in the pathogenesis of type 1 diabetes. Semin Immunopathol. 2011;33:45–55.

    Article  CAS  PubMed  Google Scholar 

  8. Sarmiento L, Galvan JA, Cabrera-Rode E, et al. Type 1 diabetes associated and tissue transglutaminase autoantibodies in patients without type 1 diabetes and celiac disease with confirmed viral infections. J Med Virol. 2012;84:1049–1053.

    Article  CAS  PubMed  Google Scholar 

  9. Guttman JA, Finlay BB. Tight junctions as targets of infectious agents. Biochim Biophys Acta. 2009;1788:832–841.

    Article  CAS  PubMed  Google Scholar 

  10. Heyman M, Abed J, Lebreton C, Cerf-Bensussan N. Intestinal permeability in celiac disease: insight into mechanisms and relevance to pathogenesis. Gut. 2012;61:1355–1364.

    Article  CAS  PubMed  Google Scholar 

  11. Vorobjova T, Uibo O, Ojakivi I, et al. Lower expression of tight junction protein 1 gene and increased FOXP3 expression in the small bowel mucosa in celiac disease and associated type 1 diabetes mellitus. Int Arch Allergy Immunol. 2011;156:451–461.

    Article  CAS  PubMed  Google Scholar 

  12. Vorobjova T, Uibo O, Heilman K, Uibo R. Increased density of tolerogenic dendritic cells in the small bowel mucosa of celiac patients. World J Gastroenterol. 2015;21:439–452.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang W, Uzzau S, Goldblum SE, Fasano A. Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci. 2000;113:4435–4440.

    CAS  PubMed  Google Scholar 

  14. Drago S, El Asmar R, Di Pierro M, et al. Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol. 2006;41:408–419.

    Article  CAS  PubMed  Google Scholar 

  15. Lammers KM, Lu R, Brownley J, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135:e3.

    Google Scholar 

  16. Mazzini E, Massimiliano L, Penna G, Rescigno M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity. 2014;40:248–261.

    Article  CAS  PubMed  Google Scholar 

  17. Neijssen J, Pang B, Neefjes J. Gap junction-mediated intercellular communication in the immune system. Prog Biophys Mol Biol. 2007;94:207–218.

    Article  CAS  PubMed  Google Scholar 

  18. Sáez PJ, Shoji KF, Aguirre A, Sáez JC. Regulation of hemichannels and gap junction channels by cytokines in antigen-presenting cells. Mediat Inflamm. 2014;2014:742734.

    Article  Google Scholar 

  19. Matsue H, Yao J, Matsue K, et al. Gap junction-mediated intercellular communication between dendritic cells (DCs) is required for effective activation of DCs. J Immunol. 2006;176:181–190.

    Article  CAS  PubMed  Google Scholar 

  20. Mendoza-Naranjo A, Bouma G, Pereda C, et al. Functional gap junctions accumulate at the immunological synapse and contribute to T cell activation. J Immunol. 2011;187:3121–3132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bracken S, Byrne G, Kelly J, Jackson J, Feighery C. Altered gene expression in highly purified enterocytes from patients with active coeliac disease. BMC Genomics. 2008;9:377.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Karlsen AE, Hagopian WA, Grubin CE, et al. Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10. Proc Natl Acad Sci USA. 1991;88:8337–8341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uibo R, Lernmark Ǻ. GAD65 autoimmunity-clinical studies. Adv Immunol. 2008;100:39–78.

    Article  CAS  PubMed  Google Scholar 

  24. Vaarala O. Gut and the induction of immune tolerance in type 1 diabetes. Diab Metab Res Rev. 1999;15:353–361.

    Article  CAS  Google Scholar 

  25. Auricchio R, Paparo F, Maglio M, et al. In vitro-deranged intestinal immune response to gliadin in type 1 diabetes. Diabetes. 2004;53:1680–1683.

    Article  CAS  PubMed  Google Scholar 

  26. Uibo R, Panarina M, Teesalu K, et al. Coeliac disease in patients with type 1 diabetes: A condition with distinct changes in intestinal immunity? Cell Mol Immunol. 2011;8:150–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paronen J, Klemetti P, Kantele JM, et al. Glutamate decarboxylase-reactive peripheral blood lymphocytes from patients with IDDM express gut-specific homing receptor α4β7-integrin. Diabetes. 1997;46:583–588.

    Article  CAS  PubMed  Google Scholar 

  28. Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, Maclaren NK. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Invest. 1994;94:2125–2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jones DB, Crosby I. Proliferative lymphocyte responses to virus antigens homologous to GAD65 in IDDM. Diabetologia. 1996;39:1318–1324.

    Article  CAS  PubMed  Google Scholar 

  30. Honeyman MC, Coulson BS, Stone NL, et al. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes. 2000;49:1319–1324.

    Article  CAS  PubMed  Google Scholar 

  31. Frisk G, Tuvemo T. Enterovirus infections with β-cell tropic strains are frequent in siblings of children diagnosed with type 1 diabetes children and in association with elevated levels of GAD65 antibodies. J Med Virol. 2004;73:450–459.

    Article  CAS  PubMed  Google Scholar 

  32. Wang FY, Watanabe M, Zhu RM, Maemura K. Characteristic expression of gamma-aminobutyric acid and glutamate decarboxylase in rat jejunum and its relation to differentiation of epithelial cells. World J Gastroenterol. 2004;10:3608–3611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walker-Smith J, Guandalini S, Schmitz J, Shmerling DH, Visakorpi JK. Revised criteria for diagnosis of celiac disease. Report of working group of European Society of Pediatric Gastroenterology and Nutrition. Arch Dis Child. 1990;65:909–911.

    Article  Google Scholar 

  34. Marsh MN. Gluten, major histocompatibility complex, and the small intestine: a molecular and immunobiologic approach to the spectrum of gluten sensitivity (“celiac sprue”). Gastroenterology. 1992;102:330–354.

    Article  CAS  PubMed  Google Scholar 

  35. Viskari H, Ludvigsson J, Uibo R, et al. Relationship between the incidence of type 1 diabetes and enterovirus infections in different European populations: results from the EPIVIR project. J Med Virol. 2004;72:610–617.

    Article  PubMed  Google Scholar 

  36. Hovi T, Roivainen M. Peptide antisera targeted to a conserved sequence in poliovirus capsid VP1 cross-react widely with members of the genus Enterovirus. J Clin Microbiol. 1993;31:1083–1087.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Methods. 2001;25:402–408.

    Article  CAS  PubMed  Google Scholar 

  38. Jayashree B, Bibin YS, Prabhu D, et al. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol Cell Biochem. 2014;388:203–210.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang D, Zhang L, Zheng Y, Yue F, Russell RD, Zeng Y. Circulating zonulin levels in newly diagnosed Chinese type 2 diabetes patients. Diabetes Res Clin Pract. 2014;106:312–318.

    Article  CAS  PubMed  Google Scholar 

  40. Duerksen DR, Wilhelm-Boyles C, Veitch R, Kryszak D, Parry DM. A comparison of antibody testing, permeability testing, and zonulin levels with small-bowel biopsy in celiac disease patients on a gluten-free diet. Dig Dis Sci. 2010;55:1026–1031.

    Article  CAS  PubMed  Google Scholar 

  41. Rallabhandi P. Gluten and celiac disease—an immunological perspective. J AOAC Int. 2012;95:349–355.

    Article  CAS  PubMed  Google Scholar 

  42. Oikarinen M, Tauriainen S, Honkanen T, et al. Detection of enteroviruses in the intestine of type 1 diabetes patients. Clin Exp Immunol. 2008;151:71–75. Epub 2007 Nov 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oikarinen M, Tauriainen S, Oikarinen S, et al. Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes. 2012;61:687–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG. The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia. 2009;52:1143–1151.

    Article  CAS  PubMed  Google Scholar 

  45. Dotta F, Censini S, van Halteren AG, et al. Coxsackie B4 virus infection of β cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA. 2007;104:5115–5120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sadeharju K, Lönnrot M, Kimpimäki T, et al. Enterovirus antibody levels during the first two years of life in prediabetic autoantibody-positive children. Diabetologia. 2001;44:818–823.

    Article  CAS  PubMed  Google Scholar 

  47. Honeyman MC, Stone NL, Harrison LC. T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents. Diabetologia. 2001;44:818–823.

    Article  Google Scholar 

  48. Hyland NP, Cryan JF. A gut feeling about GABA: focus on GABA(B) receptors. Front Pharmacol. 2010;1:124.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Krecsmarik M, Katarova Z, Bagyánszki M, Szabó G, Fekete E. Gastrointestinal phenotype of GAD67lacZ transgenic mice with early postnatal lethality. Histol Histopathol. 2005;20:75–82.

    CAS  PubMed  Google Scholar 

  50. Bhat R, Axtell R, Mitra A, et al. Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci USA. 2010;107:2580–2585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Munn DH, Sharma MD, Lee JR, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science. 2002;297:1867–1870.

    Article  CAS  PubMed  Google Scholar 

  52. Cherayil BJ. Indoleamine 2,3-dioxygenase in intestinal immunity and inflammation. Inflamm Bowel Dis. 2009;15:1391–1396.

    Article  PubMed  Google Scholar 

  53. Matteoli G, Mazzini E, Iliev ID, et al. Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut. 2010;59:595–604.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Tiina Rägo from the Children’s Clinic of Tartu University Hospital, Tartu, for providing a part of the clinical material and Dr. Kaja Metsküla for performing the GAD65 Autoantibody ELISA assay. Mrs. Anu Kaldmaa from the Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, and Mrs. Merje Jakobson from the Department of Pathology, Tartu University Hospital are acknowledged for their assistance with the laboratory procedures.

Funding

This study was supported by Grants from the Estonian Research Foundation (No. 8334), by the EU Regional Developmental Fund and by Grants from the Estonian Ministry of Education and Research (SF 0180035s08 and IUT20-43).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Vorobjova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobjova, T., Raikkerus, H., Kadaja, L. et al. Circulating Zonulin Correlates with Density of Enteroviruses and Tolerogenic Dendritic Cells in the Small Bowel Mucosa of Celiac Disease Patients. Dig Dis Sci 62, 358–371 (2017). https://doi.org/10.1007/s10620-016-4403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4403-z

Keywords

Navigation