Skip to main content

Advertisement

Log in

Structural Change in Microbiota by a Probiotic Cocktail Enhances the Gut Barrier and Reduces Cancer via TLR2 Signaling in a Rat Model of Colon Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Structural change in the gut microbiota is implicated in cancer. The beneficial modulation of the microbiota composition with probiotics and prebiotics prevents diseases.

Aim

We investigated the effect of oligofructose–maltodextrin-enriched Lactobacillus acidophilus, Bifidobacteria bifidum, and Bifidobacteria infantum (LBB), on the gut microbiota composition and progression of colorectal cancer.

Methods

Sprague Dawley rats were acclimatized, given ampicillin (75 mg/kg), and treated as follows; GCO: normal control; GPR: LBB only; GPC: LBB+ 1,2-dimethylhydrazine dihydrochloride (DMH); and GCA: DMH only (cancer control). 16S V4 Pyrosequencing for gut microbiota analysis, tumor studies, and the expression of MUC2, ZO-1, occludin, TLR2, TLR4, caspase 3, COX-2, and β-catenin were conducted at the end of experiment.

Results

Probiotic LBB treatment altered the gut microbiota. The relative abundance of genera Pseudomonas, Congregibacter, Clostridium, Candidactus spp., Phaeobacter, Escherichia, Helicobacter, and HTCC was decreased (P < 0.05), but the genus Lactobacillus increased (P < 0.05), in LBB treatment than in cancer control. The altered gut microbiota was associated with decreased tumor incidence (80 % in GPC vs. 100 % in GCA, P = 0.0001), tumor volume (GPC 84.23 (42.75–188.4) mm3 vs. GCA 243 (175.5–344.5) mm3, P < 0.0001) and tumor multiplicity/count (GPC 2.92 ± 0.26 vs. GCA 6.27 ± 0.41; P < 0.0001). The expression of MUC2, ZO-1, occludin, and TLR2 was increased, but expression of TLR4, caspase 3, Cox-2, and β-catenin was decreased by LBB treatment than in cancer control GCA (P < 0.05).

Conclusion

Administration of LBB modulates the gut microbiota and reduces colon cancer development by decreasing tumor incidence, multiplicity/count, and volume via enhanced TLR2-improved gut mucosa epithelial barrier integrity and suppression of apoptosis and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cenit MC, Matzaraki V, Tigchelaar EF, Zhernakova A. Rapidly expanding knowledge of the role of the gut microbiome in health and diseases. Biochim Biophys Acta. 2014;1842:1981–1992.

    Article  CAS  PubMed  Google Scholar 

  2. Compare D, Nardone G. The bacteria-hypothesis of colorectal cancer: pathogenetic and therapeutic implications. Transl Gastrointest Cancer. 2013;3:44–53.

    Google Scholar 

  3. Sonnenburg JL, Xu J, Leip DD, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 2005;307:1955–1959.

    Article  CAS  PubMed  Google Scholar 

  4. LeBlanc JG, Milani C, De Giori GS, et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24:160–168.

    Article  CAS  PubMed  Google Scholar 

  5. Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe. 2011;10:311–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zackular JP, Baxter NT, Iverson KD, et al. The gut microbiome modulates colon tumorigenesis. mBio. 2013;4:e00692–e00613.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liong MT. Role of probiotics and prebiotics in colon cancer prevention: postulated mechanisms and in-vivo evidence. Int J Mol Sci. 2008;9:854–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. IOM (Institute of Medicine). The human microbiome, diet, and health; workshop summary. The National Academy of Science 2013.

  9. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  10. Dejea C, Wick E, Sears CL. Bacterial oncogenesis in the colon. Future Microbiol. 2013;8:445–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Allegra CJ, Paik S, Colangelo LH, et al. Prognostic value of thymidylate kinase synthase, Ki-67 and p53 in patients with Dukes B and C colon Cancer: a national cancer institute-National surgical Adjuvant Breast and bowel project collaborative study. J Clin Oncol. 2003;21:241–250.

    Article  CAS  PubMed  Google Scholar 

  12. Kranz D, Dobbelstein M. A killer promoting survival: p53 as a selective means to avoid side effects of chemotherapy. Cell Cycle. 2012;11:2053–2054.

    Article  CAS  PubMed  Google Scholar 

  13. Huxley RR, Ansary-Moghaddam A, Clifton P, Czernichow S, Parr CL, Woodward M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence. Int J Cancer. 2009;125:171–180.

    Article  CAS  PubMed  Google Scholar 

  14. McCullough ML, Patel AV, Kushi LH, et al. Following cancer prevention guidelines reduces risk of cancer, cardiovascular disease, and all-cause mortality. Cancer Epidemiol Biomarkers Prev. 2011;20:1089–1097.

    Article  PubMed  Google Scholar 

  15. Xinli L, Dachang W, Cuili Z, Yi X. Side effects of antibiotics on the intestinal microflora by PCR-DGGE. Pak J Pharm Sci. 2013;26:339–343.

    PubMed  Google Scholar 

  16. Zhu Q, Jin Z, Wu W, et al. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer. PLoS ONE. 2014;9:e90849.

    Article  PubMed  PubMed Central  Google Scholar 

  17. El-Mowafy AM, Al-Gayyar MM, Salem HA, et al. Novel chemotherapeutic and renal protective effects for the green tea (EGCG): role of oxidative stress and inflammatory-cytokine signaling. Phytomedicine. 2010;17:1067–1075.

    Article  CAS  PubMed  Google Scholar 

  18. Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–2963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bokulich NA, Subramanian S, Faith JJ, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–59.

    Article  CAS  PubMed  Google Scholar 

  20. Haas BJ, Gevers D, Earl AM, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011;21:494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–998.

    Article  CAS  PubMed  Google Scholar 

  24. DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–5072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Q, Garrity GM, Tiedje JM, Cold JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–5267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee JTY, Tasang WH, Chow JR. Simple modifications to standard TRizol protocol allow high yield RNA extraction from cells on resorbable materials. J Biomater Nanobiotechnol. 2011;2:41–48.

    Article  CAS  Google Scholar 

  28. Gupta RA, Dubois RN. Colorectal Cancer Prevention and treatment by inhibition of Cyclooxygenase-2. Nutr Rev Cancer. 2001;1:11–21.

    Article  CAS  Google Scholar 

  29. Li Y, Lu W, Saini S, Moukha-Chafiq O, Pathak V, Ananthan S. Identification of quinazoline compounds as novel potent inhibitors of Wnt/β-catenin signaling in colorectal cancer cells. Oncotarget. 2016;7:11263–11270.

    PubMed  PubMed Central  Google Scholar 

  30. Paul S, DeCastro AJ, Lee HJ, et al. Dietary intake of pterostilbene, a constituent of blueberries, inhibits the β -catenin/p65 downstream signaling pathway and colon carcinogenesis in rats. Carcin. 2010;31:1272–1278.

    Article  CAS  Google Scholar 

  31. Hajrezaie M, Shams K, Moghadamtousi SZ, et al. Chemoprevention of colonic aberrant crypt foci by novel Schiff based dichlorido(4-methoxy-2-{[2-(piperazin-4-ium-1-yl)ethyl]iminomethyl}phenolate)Cd complex in azoxymethane-induced colorectal cancer in rats. SCI Rep. 2015;5:12379. doi:10.1038/srep12379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sohini W, Rozy K, Sarbjit SK, Davinder KD. Cyclooxygenase as a target in chemoprevention by probiotics during 1,2-dimethylhydrazine induced colon carcinogenesis in rats. Nutr Cancer. 2015;67:603–611.

    Article  Google Scholar 

  33. Singh J, Rivenson A, Tomita M, Shimamura S, Ishibashi N, Reddy BS. Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis. 1997;18:833–841.

    Article  CAS  PubMed  Google Scholar 

  34. Gallaher DD, Khil J. The effect of synbiotics on colon carcinogenesis in rats. J Nutr. 1999;129:1483S–1487S.

    CAS  PubMed  Google Scholar 

  35. Xenoulis PG, Palculict B, Allenspach K, et al. Molecular-phylogenetic characterization of microbial communities imbalances in the small intestine of dogs with inflammatory bowel disease. FEMS Microbiol Ecol. 2008;66:579–589.

    Article  CAS  PubMed  Google Scholar 

  36. Coburn B, Sekirov I. Finlay BB: type III secretion systems and diseases. Clin Microbiol Rev. 2007;20:535–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kessler M, Zielecki J, Thieck O, Mollenkopf HJ, Fotopoulou C, Meyer TF. Chlamydia trachomatis disturbs epithelial tissue homeostasis in fallopian tubes via paracrine Wnt signaling. Am J Pathol. 2012;180:186–198.

    Article  CAS  PubMed  Google Scholar 

  38. Chumduri C, Gurumurthy RK, Zadora PK, Mi Y, Meyer TF. Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response. Cell Host Microbe. 2013;13:746–758.

    Article  CAS  PubMed  Google Scholar 

  39. Kun D, Xiang-Lin C, Ming Z, Qi L. Chlamydia inhibit host cell apoptosis by inducing Bag-1 via the MAPK/ERK survival pathway. Apoptosis Int J Program Cell Death. 2013;18:1083–1092.

    Article  Google Scholar 

  40. Chlamydia Can Cause DNA Damage Linked With Cancer Risk, Study Finds. http://www.huffingtonpost.com/2013/06/21/chlamydia-cancer-dna-damage_n_3479859.html.

  41. Jenkins WD, LeVault K, Sutcliffe S. Chamydia trachonatis infection: possible co-factor for oropharyngeal cancer development. Oral Oncol. 2015;51:e8–e9.

    Article  PubMed  Google Scholar 

  42. Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15:1016–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sokol SY. Wnt signaling and dorso-ventral axis specification in vertebrates. Curr Opin Genet Dev. 1999;9:405–410.

    Article  CAS  PubMed  Google Scholar 

  44. Dulal S, Keku OT. Gut microbiome and colorectal adenomas. Cancer J. 2014;20:225–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shiryaev SA, Remacle AG, Chernov AV, et al. Substrate cleavage profiling suggests a distinct function of Bacteroides fragilis metalloproteinases (fragilysin and metalloproteinase II) at the microbiome-inflammation-cancer interface. J Biol Chem. 2013;288:34956–34967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sears CL. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev. 2009;22:349–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tosolini M, Kirilovsky A, Mlecnik B, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71:1263–1271.

    Article  CAS  PubMed  Google Scholar 

  48. Goodwin AC, Destefano Shields CE, Wu S, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA. 2011;108:15354–15359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Satishchandran C, Markham GD, Moore RC, Boyle SM. Location of SpeA, SpeB, SpeC and Metk genes on the physical map of Escherichia coli. J Bacteriol. 1990;172:4748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stover CK, Pham X-QT, Erwin AL, et al. Complete genome sequence of pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406:956–964.

    Article  Google Scholar 

  51. Shogan BD, Smith DP, Christley S, Gilbert JA, Zaborina O, Averdy JC. Intestinal anastomotic injury alters spatially defined microbiome composition and function. Microbiome. 2014;2:35.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Torres AG. Adhesion of enteropathogenic Escherichia coli. Ecosal Plus. 2006. doi:10.1128/ecosaplus.8.3.2.4.

    PubMed  Google Scholar 

  53. Bernstein C, Holubec H, Bhattacharyya AK, et al. Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol. 2011;85:863–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sirinathsinghji Eva. Gut microbiota and cancer. ISIS Report 2014. http://www.i-sis.org.uk/The_Gut_Microbiome_and_cancer.php. Retrieved: 20/10/2016.

  55. Fujimori S, Kishida T, Kobayashi T, et al. Helicobacter pylori infection increases the risk of colorectal adenoma and adenocarcinoma, especially in women. J Gastroenterol. 2005;40:887–893.

    Article  PubMed  Google Scholar 

  56. Galdeano M, Perdigon G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol. 2006;13:219–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rafter J, Bennett M, Caderni G, et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr. 2007;85:488–496.

    CAS  PubMed  Google Scholar 

  58. Hamilton MK, Boundry G, Lemay DG, Raybould HE. Changes in intestinal barrier function and gut microbiota in high-fat-diet-fed rats are dynamic and region dependent. Am J Physiol Gastroenterol Liver Physiol. 2015;308:G840–G851.

    Article  CAS  Google Scholar 

  59. Yuhara H, Steinmaus C, Cohen SE, Corley DA, Tei Y, Buffer PA. Is diabetes mellitus an independent risk factor for colon cancer and rectal cancer? Am J Gastroenterol. 2011;106:1911–1922.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Krych T, Nielsen DS, Hansen AK, Hansen CH. Gut microbial markers are associated with diabetes onset, regulatory imbalance, and INF-y lelel in NOD mice. Gut Microbes. 2015;6:101–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang K, Popova NV, Yang WC, et al. Interaction of Muc2 and Apc on Wnt signaling and in intestinal tumorigenesis: potential role of chronic inflammation. Cancer Res. 2008;68:7313–7322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cario E. Barrier-protective function of intestinal epithelial Toll-like receptor 2. Mucosal Immunol. 2008;1:S62–S66.

    Article  CAS  PubMed  Google Scholar 

  63. Mennigen R, Nolte K, Rijcken E, et al. Probiotic mixture VSL# 3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1140–G1149.

    Article  CAS  PubMed  Google Scholar 

  64. Ohland CL, MacNaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol. 2010;298:G807–G819.

    Article  CAS  PubMed  Google Scholar 

  65. Prisciandaro LD, Geier MS, Butler RN, Cummins AG, Howarth GS. Evidence supporting the use of probiotics for the prevention and treatment of chemotherapy-induced intestinal mucositis. Crit Rev Food Sci Nutr. 2011;51:239–247.

    Article  PubMed  Google Scholar 

  66. Lowe EL, Crother TR, Rabizadeh S, et al. Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer. PLoS ONE. 2010;5:e13027.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cario E, Gerken G, Podolsky D. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology. 2007;132:1359–1374.

    Article  CAS  PubMed  Google Scholar 

  68. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10:131–144.

    Article  CAS  PubMed  Google Scholar 

  69. Nurmi JT, Puolakkainen PA, Rautonen NE. Bifidobacterium lactis sp. 420 up-regulates cyclooxygenase(Cox)-1 and down-regulates Cox-2 gene expression in Caco-2 cell culture model. Nutr Cancer. 2005;51:83–93.

    Article  CAS  PubMed  Google Scholar 

  70. Otte JM, Mahjurian-Namari R, Brand S, Werner I, Schmidt WE, Schmitz F. Probiotics regulate the expression of Cox-2 in intestinal epithelial cells. Nutr Cancer. 2009;61:103–113.

    Article  CAS  PubMed  Google Scholar 

  71. Poijakovic M, Svensson M, Svanborg C, Johansson K, Larsson B, Persson KP. Escherichia coli-induced inducible nitric oxide synthase and cyclooxygenase expression in the mouse bladder and kidney. Kidney Int. 2001;59:893–904.

    Article  Google Scholar 

  72. Sadikot RT, Zeng H, Azim AC, et al. Bacterial clearance of Pseudomonas aeruginosa is enhanced by the inhibition of Cox-2. Eur J Immunol. 2007;37:1001–1009.

    Article  CAS  PubMed  Google Scholar 

  73. Rupp J, Berger M, Reiling N, et al. Cox-2 inhibition abrogates Chlamydia pneumoniae-induced PGE2 and MMP-1 expression. Biochem Biophys Res Commun. 2004;320:738–744.

    Article  CAS  PubMed  Google Scholar 

  74. Sierra JC, Hobbs S, Chaturvedi R, et al. Induction of Cox-2 expression by Helicobacter pylori is mediated by activation of epidermal growth factor receptor in gastric epithelial cells. Am J Physiol Gastrointest Liver. 2013;305:G196–G203.

    Article  CAS  Google Scholar 

  75. Sz-Jie W, Jong-Yi F, Chang-chai N, Chong-Yi W, Yuan-Tay S. Anti-inflammatory activity of lactobacillus-fermented adlay-soymilk in LPS-induced macrophages through suppression of NF-kB pathways. Food Res Int. 2013;52:262–268.

    Article  Google Scholar 

  76. Roy B, Subramaniam D, Ahmed I, et al. Role of bacterial infection in the epigenetic regulation of Wnt antagonist WIF1 by PRC2 protein EZH2. Oncogene. 2015;34:4519–4530.

    Article  CAS  PubMed  Google Scholar 

  77. Umar S. Citrobacter infection and wnt signaling. Curr Colorectal Cancer Rep. 2012;8:298–306.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their valuable comments that were helpful in our work. The study was supported by National Natural Science Foundation of China (81373875).

Author contributions

EK and XY designed and conceived the study. EK, SX, AA, YG, BD, CG, and SM performed the experiment. EK, SZ, and MY analyzed the results. EK, XY, and SD wrote the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Xin or Dong Shang.

Ethics declarations

Conflict of interest

Authors confirm that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Haematoxylin and Eosin staining; (A) representative normal colon mucosa and (B) Representative cancer of the colon show high grade adenocarcinoma (TIFF 2043 kb)

Supplementary Figure 2

Immunohistochemistry of COX-2 of colon from GPR, GPC, GCA and GCA. Probiotic LBB deceased COX-2 expression compared with GCA. #GCO: Normal control; GPR: Probiotic LBB only; GPC: Probiotic LBB and Cancer; GCA: Cancer Control (TIFF 3597 kb)

Supplementary material 3 (DOCX 15 kb)

Supplementary material 4 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuugbee, E.D., Shang, X., Gamallat, Y. et al. Structural Change in Microbiota by a Probiotic Cocktail Enhances the Gut Barrier and Reduces Cancer via TLR2 Signaling in a Rat Model of Colon Cancer. Dig Dis Sci 61, 2908–2920 (2016). https://doi.org/10.1007/s10620-016-4238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4238-7

Keywords

Navigation