Skip to main content
Log in

Chlamydia inhibit host cell apoptosis by inducing Bag-1 via the MAPK/ERK survival pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Chlamydia are obligate intracellular bacteria that frequently cause human disease. Host cells infected with Chlamydia are profoundly resistant to diverse apoptotic stimuli. The inhibition of apoptosis is thought to be an important immune escape mechanism allowing Chlamydia to productively complete their obligate intracellular growth cycle. Chlamydial antiapoptotic activity involves activation of the MAPK/ERK survival pathway. However, the molecular mechanisms are not well understood. Here we show that Bag-1 is up-regulated in Chlamydia-infected cells. U0126 and GW5074 suppress the induction of Bag-1 by Chlamydia, implying that Chlamydia may up-regulate Bag-1 via the MAPK/ERK survival pathway. Overexpression of Bag-1 is sufficient to protect against apoptosis, while depletion of Bag-1 suppresses the antiapoptotic effect of Chlamydia. The data indicate Chlamydia may up-regulate Bag-1 through the MAPK/ERK survival pathway to suppress apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hackstadt T (1998) The diverse habitats of obligate intracellular parasites. Curr Opin Microbiol 1:82–87

    Article  PubMed  CAS  Google Scholar 

  2. Hackstadt T, Fischer ER, Scidmore MA, Rockey DD, Heinzen RA (1997) Origins and functions of the chlamydial inclusion. Trends Microbiol 5:288–293

    Article  PubMed  CAS  Google Scholar 

  3. Hybiske K, Stephens RS (2007) Mechanisms of host cell exit by the intracellular bacterium Chlamydia. PNAS 104:11430–11435

    Article  PubMed  CAS  Google Scholar 

  4. Taylor HR, Johnson SL, Schachter J, Caldwell HD, Prendergast RA (1987) Pathogenesis of trachoma: the stimulus for inflammation. J Immunol 138:3023–3027

    PubMed  CAS  Google Scholar 

  5. Sherman KJ, Daling JR, Stergachis A, Weiss NS, Foy HM, Wang SP et al (1990) Sexually transmitted diseases and tubal pregnancy. Sex Transm Dis 17:115–121

    Article  PubMed  CAS  Google Scholar 

  6. Kuo CC, Grayston JT, Campbell LA, Goo YA, Wissler RW, Benditt EP (1995) Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15–34 years old). PNAS 92:6911–6914

    Article  PubMed  CAS  Google Scholar 

  7. Clifton DR, Goss RA, Sahni SK, van Antwerp D, Baggs RB, Marder VJ et al (1998) NF-kappa B-dependent inhibition of apoptosis is essential for host cell survival during Rickettsia rickettsii infection. PNAS 95:4646–4651

    Article  PubMed  CAS  Google Scholar 

  8. Pirbhai M, Dong F, Zhong Y, Pan KZ, Zhong G (2006) The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells. J Biol Chem 281:31495–31501

    Article  PubMed  CAS  Google Scholar 

  9. Wahl C, Maier S, Marre R, Essig A (2003) Chlamydia pneumoniae induces the expression of inhibitor of apoptosis 2 (c-IAP2) in a human monocytic cell line by an NF-kappaB-dependent pathway. Int J Med Microbiol 293:377–381

    Article  PubMed  CAS  Google Scholar 

  10. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed  CAS  Google Scholar 

  11. Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306

    Article  PubMed  CAS  Google Scholar 

  12. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  PubMed  CAS  Google Scholar 

  13. Henkart PA (1996) ICE family proteases: Mediators of all apoptotic cell death? Immunity 4:195–201

    Article  PubMed  CAS  Google Scholar 

  14. Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446

    Article  PubMed  CAS  Google Scholar 

  15. Webb SJ, Harrison DJ, Wyllie AH (1997) Apoptosis: an overview of the process and its relevance in disease. Adv Pharmacol 41:1–34

    Article  PubMed  CAS  Google Scholar 

  16. Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10:381–391

    Article  PubMed  CAS  Google Scholar 

  17. Kyriakis JM, Avruch J (1996) Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 271:24313–24316

    Article  PubMed  CAS  Google Scholar 

  18. Leu CM, Chang C, Hu C (2000) Epidermal growth factor (EGF) suppresses staurosporine-induced apoptosis by inducing mcl-1 via the mitogen-activated protein kinase pathway. Oncogene 19:1665–1675

    Article  PubMed  CAS  Google Scholar 

  19. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and independent mechanisms. Science 286:1358–1362

    Article  PubMed  CAS  Google Scholar 

  20. Townsend PA, Dublin E, Hart IR, Kao RH, Hanby AM, Cutress RI et al (2002) BAG-1 expression in human breast cancer: interrelationship between BAG-1 RNA, protein, hsc-70 expression and clinico-pathological data. J Pathol 197:51–59

    Article  PubMed  CAS  Google Scholar 

  21. Hague A, Packham G, Huntley S, Shefford K, Eveson JW (2002) Deregulated BAG-1 protein expressed in human oral squamous cell carcinomas and lymph node metastases. J Pathol 197:60–71

    Article  PubMed  CAS  Google Scholar 

  22. Rorke S, Murphy S, Khalifa M, Chernenko G, Tang SC (2001) Prognostic significance of BAG-1 expression in nonsmall cell lung cancer. Int J Cancer 95:317–322

    Article  PubMed  CAS  Google Scholar 

  23. Townsend PA, Cutress RI, Sharp A, Brimmell M, Packham G (2003) BAG-1: a multifunctional regulator of cell growth and survival. Biochim Biophys Acta 1603:83–98

    PubMed  CAS  Google Scholar 

  24. Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan JA et al (1995) Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80:279–284

    Article  PubMed  CAS  Google Scholar 

  25. Bardelli A, Longati P, Albero D, Goruppi S, Schneider C, Ponzetto C et al (1996) HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. EMBO J 15:6205–6212

    PubMed  CAS  Google Scholar 

  26. Clevenger CV, Thickman K, Ngo W, Chang WP, Takayama S, Reed JC (1997) Role of Bag-1 in the survival and proliferation of the cytokine-dependent lymphocyte lines, Ba/F3 and Nb2. Mol Endocrinol 11:608–618

    Article  PubMed  CAS  Google Scholar 

  27. Takayama S, Bimston DN, Matsuzawa S, Freeman BC, Aime-Sempe C, Xie Z et al (1997) BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J 16:4887–4896

    Article  PubMed  CAS  Google Scholar 

  28. Yang X, Hao Y, Ferenczy A, Tang SC, Pater A (1999) Overexpression of anti-apoptotic gene BAG-1 in human cervical cancer. Exp Cell Res 247:200–207

    Article  PubMed  CAS  Google Scholar 

  29. Fan T, Lu H, Hu H, Shi L, McClarty GA, Nance DM et al (1998) Inhibition of apoptosis in Chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 187:487–496

    Article  PubMed  CAS  Google Scholar 

  30. Ying S, Seiffert BM, Häcker G, Fischer SF (2005) Broad degradation of proapoptotic proteins with the conserved Bcl-2 homology domain 3 during infection with Chlamydia trachomatis. Infect Immun 73:1399–1403

    Article  PubMed  CAS  Google Scholar 

  31. Fischer SF, Vier J, Kirschnek S, Klos A, Hess S, Ying S et al (2004) Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins. J Exp Med 200:905–916

    Article  PubMed  CAS  Google Scholar 

  32. Dong F, Pirbhai M, Xiao Y, Zhong Y, Wu Y, Zhong G (2005) Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in Chlamydia trachomatis-infected cells. Infect Immun 73:1861–1864

    Article  PubMed  CAS  Google Scholar 

  33. Du K, Zheng Q, Zhou M, Zhu L, Ai B, Zhou L (2011) Chlamydial antiapoptotic activity involves activation of the Raf/MEK/ERK survival pathway. Curr Microbiol 63:341–346

    Article  PubMed  CAS  Google Scholar 

  34. Wang HG, Takayama S, Rapp UR, Reed JC (1996) Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. PNAS 93:7063–7068

    Article  PubMed  CAS  Google Scholar 

  35. Caldwell HD, Kromhout J, Schachter J (1981) Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31:1161–1176

    PubMed  CAS  Google Scholar 

  36. Geng Y, Shane RB, Berencsi K, Gonczol E, Zaki MH, Margolis DJ et al (2000) Chlamydia pneumoniae inhibits apoptosis in human peripheral blood mononuclear cells through induction of IL-10. J Immunol 164:5522–5529

    PubMed  CAS  Google Scholar 

  37. Rajalingam K, Sharma M, Lohmann C, Oswald M, Thieck O, Froelich CJ et al (2008) Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis infected cells. PLoS ONE 3:e3102

    Article  PubMed  Google Scholar 

  38. Xiao Y, Zhong Y, Greene W, Dong F, Zhong G (2004) Chlamydia trachomatis infection inhibits both Bax and Bak activation induced by staurosporine. Infect Immun 72:5470–5474

    Article  PubMed  CAS  Google Scholar 

  39. Rajalingam K, Sharma M, Paland N, Hurwitz R, Thieck O, Oswald M et al (2006) IAP–IAP complexes required for apoptosis resistance of C. trachomatis: infected cells. PLoS Pathog 2:e114

    Article  PubMed  Google Scholar 

  40. Lavoie JN, L’Allemain G, Brunet A, Müller R, Pouysségur J (1996) Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271:20608–20616

    Article  PubMed  CAS  Google Scholar 

  41. Gredinger E, Gerber AN, Tamir Y, Tapscott SJ, Bengal E (1998) Mitogen-activated protein kinase pathway is involved in the differentiation of muscle cells. J Biol Chem 273:10436–10444

    Article  PubMed  CAS  Google Scholar 

  42. Johnson GL, Vaillancourt RR (1994) Sequential protein kinase reactions controlling cell growth and differentiation. Curr Opin Cell Biol 6:230–238

    Article  PubMed  CAS  Google Scholar 

  43. Hetman M, Kanning K, Cavanaugh JE, Xia Z (1999) Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J Biol Chem 274:22569–22580

    Article  PubMed  CAS  Google Scholar 

  44. Tran SE, Holmstrom TH, Ahonen M, Kahari VM, Eriksson JE (2001) MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J Biol Chem 276:16484–16490

    Article  PubMed  CAS  Google Scholar 

  45. Perkins D, Pereira EF, Gober M, Yarowsky PJ, Aurelian L (2002) The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway. J Virol 76:1435–1449

    Article  PubMed  CAS  Google Scholar 

  46. Schulz JB, Bremen D, Bremen JC, Lommatzsch J, Takayama S, Wüllner U et al (1997) Cooperative interception of neuronal apoptosis by BCL-2 and BAG-1 expression: prevention of caspase activation and reduced production of reactive oxygen species. J Neurochem 69:2075–2086

    Article  PubMed  CAS  Google Scholar 

  47. Wang HG, Takayama S, Rapp UR, Reed JC (1996) Bcl-2 interacting protein Bag-1 binds to and activates the kinase Raf-1. PNAS 93:7063–7068

    Article  PubMed  CAS  Google Scholar 

  48. Perkins D, Pereira EF, Aurelian L (2003) The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) functions as a dominant regulator of apoptosis in hippocampal neurons involving activation of the ERK survival pathway and upregulation of the antiapoptotic protein Bag-1. J Virol 77:1292–1305

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Youth Foundation of Heath Department of Hubei Province, China (Grand No. QJX 2012-46).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du Kun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kun, D., Xiang-lin, C., Ming, Z. et al. Chlamydia inhibit host cell apoptosis by inducing Bag-1 via the MAPK/ERK survival pathway. Apoptosis 18, 1083–1092 (2013). https://doi.org/10.1007/s10495-013-0865-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0865-z

Keywords

Navigation