Skip to main content

Advertisement

Log in

Evaluation of a cell model expressing βKlotho for screening FGF21 analogues

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

βKlotho as the major role is a necessary auxiliary protein when fibroblast growth factor 21 (FGF21) binds FGF21 receptors (FGFR) for activating intracellular signaling pathways that ultimately generate biological effects. To achieve the aim of high throughput screening of FGF21 analogues, we established 3T3-L1-βKlotho cells that could stably express βklotho protein. The glucose uptake, expression of GLUT1 mRNA and activation of FGF signaling molecules ERK1/2 phosphorylation were detected by GOD-POD assay, real-time PCR analysis and western blotting assay in 3T3-L1-βKlotho cells and 3T3-L1 adipocytes, respectively. The results showed that FGF21 increased glucose uptake significantly in a dose-dependent and time-dependent manner in 3T3-L1-βKlotho cells. 3T3-L1-βKlotho cells stimulated with FGF21 up-regulated the transcriptional levels of GLUT1 mRNA obviously. FGF21 activated the FGF signaling molecules ERK1/2 in 3T3-L1-βKlotho cells. In addition, the same results were obtained in 3T3-L1 adipocytes. Furthermore, FGF21-stimulated elevation of glucose uptake, GLUT1 mRNA transcription and the phosphorylation of ERK1/2 were dramatically attenuated by pretreatment of cells with FGFR specific inhibitor SU5402 in 3T3-L1-βKlotho cells. This study demonstrated that the cell model could be applied to high throughput screen FGF21 analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–437

    Article  CAS  PubMed  Google Scholar 

  • Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen YY, Moller DE, Kharitonenkov A (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–6027

    Article  CAS  PubMed  Google Scholar 

  • Gälman C, Lundåsen T, Kharitonenkov A, Bina HA, Eriksson M, Hafström I, Dahlin M, Åmark P, Angelin B, Rudling M (2008) The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARα activation in man. Cell Metab 8:169–174

    Article  CAS  PubMed  Google Scholar 

  • Ibrahimi OA, Zhang FM, Eliseenkova AV, Itoh N, Linhardt RJ, Mohammadi M (2004) Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Hum Mol Genet 13:2313–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5:415–425

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima Y (2005) Impaired negative feedback suppression of bile acid synthesis in mice lacking βKlotho. J Clin Invest 115:2202–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones S (2008) Mini-review: endocrine actions of fibroblast growth factor 19. Mol Pharm 5:42–48

    Article  CAS  PubMed  Google Scholar 

  • Jong RH, Hae SN, Ji HH, Gu SR, Deok RK (2014) Alpha-lipoic acid attenuates adipocyte differentiation and lipid accumulation in 3T3-L1 preadipocytes via AMPK-dependent autophagy. Life Sci 100:125–132

    Article  CAS  Google Scholar 

  • Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB, Etgen GJ (2007) The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148:774–781

    Article  CAS  PubMed  Google Scholar 

  • Kharitonenkov A, Dunbar JD, Bina HA, Bright S, Moyers JS, Zhang C, Ding LY, Micanovic R, Mehrbod SF, Knierman MD, Hale JE, Coskun T, Shanafelt AB (2008) FGF-21/FGF-21 receptor interaction and activation is determined by beta Klotho. J Cell Physiol 215:1–7

    Article  CAS  PubMed  Google Scholar 

  • Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, Mohammadi M, Rosenblatt KP, Kliewer SA, Kuro-o M (2007) Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 282:26687–26695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi M, Olsen SK, Ibrahimi OA (2005) Structural basis for fibroblast growth factor receptor activation. Cytokine Growth F R 16:107–137

    Article  CAS  Google Scholar 

  • Nobuyuki I, David MO (2004) Evolution of the Fgf and Fgfr gene families. Trends Genet 20:563–569

    Article  CAS  Google Scholar 

  • Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407:1029–1034

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Uehara Y, Motomura-Matsuzaka K, Oki J, Koyama Y, Kimura M, Asada M, Komi-Kuramochi A, Oka S, Imamura T (2008) beta Klotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 22:1006–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Yang P, Liu J, Wu H, Yu W, Zhang T, Fu H, Liu Y, Hai C (2014) RARγ-C-Fos-PPARγ2 signaling rather than ROS generation is critical for all-trans retinoic acid-inhibited adipocyte differentiation. Biochimie 106:121–130

    Article  CAS  PubMed  Google Scholar 

  • Wente W, Efanov AM, Brenner M, Kharitonenkov A, Koster A, Sandusky GE, Sewing S, Treinies I, Zitzer H, Gromada J (2006) Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55:2470–2478

    Article  CAS  PubMed  Google Scholar 

  • Wu XL, Ge HF, Lemon B, Vonderfecht S, Weiszmann J, Hecht R, Gupte J, Hager T, Wang ZL, Lindberg R, Li Y (2010) FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation. J Biol Chem 285:5165–5170

    Article  CAS  PubMed  Google Scholar 

  • Wu XL, Weiszmann J, Ge HF, Baribault H, Stevens J, Hawkins N, Vonderfecht S, Gardner J, Gupte J, Sheng J, Wang MH, Li Y (2012) A unique FGF23 with the ability to activate FGFR signaling through both αKlotho and βKlotho. J Mol Biol 418:82–89

    Article  CAS  PubMed  Google Scholar 

  • Wucherpfennig T, Lakowitz A, Driouch H, Krull R, Wittmann C (2012) Customization of Aspergillus niger morphology through addition of talc micro particles. J Vis Exp 61:e4023–e4023

    Google Scholar 

  • Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, Chen JL, Chen DY, Zhang ZY, Ko HJ, Kim JK, Véniant MM (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang GZ, Gao XP, Yan JF, Ou KQ (2003) Establishment of GOD-POD assay in a minimal way and application to glucose metabol ism of 3T3 -L1 adipocyte and HepG2 cell in vitro. Sichuan J Anat 11:12–15 (in Chinese)

    CAS  Google Scholar 

  • Yasushi O, Hiroshi K, Masaya Y, Animesh N, Kevin PR, Regina G, Anna VE, Moosa M, Makoto K (2007) βKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA 104:7432–7437

    Article  CAS  Google Scholar 

  • Zhang XQ, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM (2006) Receptor specificity of the fibroblast growth factor family—the complete mammalian FGF family. J Biol Chem 281:15694–15700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was financially supported by National Key R&D Program of China (2017YFD0501102, 2017YFD0501004), Science and Technology Planning Program of Heilongjiang Province (GC13C104), Research Fund for the Postdoctoral Program of Heilongjiang Province (LBH-Q09162), National Natural Science Foundation of China (J1210069/J0116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiping Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Wang, X., Yuan, Q. et al. Evaluation of a cell model expressing βKlotho for screening FGF21 analogues. Cytotechnology 71, 1033–1041 (2019). https://doi.org/10.1007/s10616-019-00344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-019-00344-z

Keywords

Navigation