Skip to main content

Advertisement

Log in

Cell survival and gene expression under compressive stress in a three-dimensional in vitro human periodontal ligament-like tissue model

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

This study investigated cell survival and gene expression under various compressive stress conditions mimicking orthodontic force by using a newly developed in vitro model of human periodontal ligament-like tissue (HPdLLT). The HPdLLT was developed by three-dimensional culturing of human periodontal ligament fibroblasts in a porous poly-l-lactide matrix with threefold increased culture media permeability due to hydrophilic modification. In vitro HPdLLTs in experimental groups were subjected to 5, 15, 25 and 35 g/cm2 compressive stress for 1, 3, 7 or 14 days; controls were cultured over the same periods without compressive stress. Cell morphology and cell apoptosis in the experimental and control groups were investigated using scanning electron microscopy and caspase-3/7 detection. Real-time polymerase chain reaction was performed for seven osteogenic and osteoclastic genes. Similar extracellular matrix and spindle-shaped cells were observed inside or on the surface of in vitro HPdLLTs, with no relation to compressive stress duration or intensity. Similar caspase-3/7 activity indicating comparable apoptosis levels was observed in all samples. Receptor activator of nuclear factor kappa-B ligand and bone morphogenetic protein 2 genes showed characteristic “double-peak” expression at 15 and 35 g/cm2 on day 14, and alkaline phosphatase and periodontal ligament-associated protein 1 expression peaked at 5 g/cm2 on day 14; other genes also showed time-dependent and load-dependent expression patterns. The in vitro HPdLLT model system effectively mimicked the reaction and gene expression of the human periodontal ligament in response to orthodontic force. This work provides new information on the effects of compressive stress on human periodontal ligament tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179

  • Byers PH (2000) Collagens: building blocks at the end of the development line. Clin Genet 58:270–279. doi:10.1034/j.1399-0004.2000.580404.x

    Article  CAS  Google Scholar 

  • De Araujo R, Oba Y, Moriyama K (2007) Identification of genes related to mechanical stress in human periodontal ligament cells using microarray analysis. J Periodontal Res 42:15–22

    Article  Google Scholar 

  • Hidaka T, Nagasawa T, Shirai K, Kado T, Furuichi Y (2012) FGF-2 induces proliferation of human periodontal ligament cells and maintains differentiation potentials of STRO-1+/CD146+ periodontal ligament cells. Arch Oral Biol 57:830–840. doi:10.1016/j.archoralbio.2011.12.003

    Article  CAS  Google Scholar 

  • Itoh K, Udagawa N, Katagiri T, Iemura S, Ueno N, Yasuda H, Higashio K, Quinn JM, Gillespie MT, Martin TJ, Suda T, Takahashi N (2001) Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-κB ligand. Endocrinology 142:3656–3662

  • Kanzaki H, Chiba M, Shimizu Y, Mitani H (2002) Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor κB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 17:210–220. doi:10.1359/jbmr.2002.17.2.210

    Article  CAS  Google Scholar 

  • Kim J-W, Lee K-S, Nahm J-H, Kang Y-G (2009) Effects of compressive stress on the expression of M-CSF, IL-1β, RANKL and OPG mRNA in periodontal ligament cells. Korean J Orthod 39:248–256

    Article  Google Scholar 

  • Kim S-J, Park K-H, Park Y-G, Lee S-W, Kang Y-G (2013) Compressive stress induced the up-regulation of M-CSF, RANKL, TNF-α expression and the down-regulation of OPG expression in PDL cells via the integrin-FAK pathway. Arch Oral Biol 58:707–716. doi:10.1016/j.archoralbio.2012.11.003

    Article  CAS  Google Scholar 

  • Krishnan V, Davidovitch ZE (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofac Orthop 129(4):469.e1–.e32

  • Langer R, Vacanti J (1993) Tissue engineering. Science 260:920–926. doi:10.1126/science.8493529

    Article  CAS  Google Scholar 

  • Li Y, Zheng W, Liu J-S, Wang J, Yang P, Li M-L, Zhao Z-H (2011) Expression of osteoclastogenesis inducers in a tissue model of periodontal ligament under compression. J Dent Res 90:115–120. doi:10.1177/0022034510385237

    Article  CAS  Google Scholar 

  • Li Y, Li M, Tan L, Huang S, Zhao L, Tang T, Liu J, Zhao Z (2013) Analysis of time-course gene expression profiles of a periodontal ligament tissue model under compression. Arch Oral Biol 58:511–522. doi:10.1016/j.archoralbio.2012.10.006

  • Liao W, Okada M, Sakamoto F, Okita N, Inami K, Nishiura A, Hashimoto Y, Matsumoto N (2013) In vitro human periodontal ligament-like tissue formation with porous poly-l-lactide matrix. Mater Sci Eng C 33:3273–3280. doi:10.1016/j.msec.2013.04.008

  • Long A, Loescher AR, Robinson PP (1996) A histological study on the effect of different periods of orthodontic force on the innervation and dimensions of the cat periodontal ligament. Arc Oral Biol 41(8–9):799–808

  • Low E, Zoellner H, Kharbanda OP, Darendeliler MA (2005) Expression of mRNA for osteoprotegerin and receptor activator of nuclear factor kappa β ligand (RANKL) during root resorption induced by the application of heavy orthodontic forces on rat molars. Am J Orthod Dentofac Orthop 128:497–503. doi:10.1016/j.ajodo.2004.03.038

    Article  Google Scholar 

  • Mitsui N, Suzuki N, Maeno M, Yanagisawa M, Koyama Y, Otsuka K, Shimizu N (2006) Optimal compressive force induces bone formation via increasing bone morphogenetic proteins production and decreasing their antagonists production by Saos-2 cells. Life Sci 78:2697–2706. doi:10.1016/j.lfs.2005.10.024

    Article  CAS  Google Scholar 

  • Nakajima R, Yamaguchi M, Kojima T, Takano M, Kasai K (2008) Effects of compression force on fibroblast growth factor-2 and receptor activator of nuclear factor kappa B ligand production by periodontal ligament cells in vitro. J Periodontal Res 43:168–173. doi:10.1111/j.1600-0765.2007.01008.x

    Article  CAS  Google Scholar 

  • Nemoto T, Kajiya H, Tsuzuki T, Takahashi Y, Okabe K (2010) Differential induction of collagens by mechanical stress in human periodontal ligament cells. Arch Oral Biol 55:981–987. doi:10.1016/j.archoralbio.2010.08.004

    Article  CAS  Google Scholar 

  • Pinero GJ, Farach-Carson MC, Devoll RE, Aubin JE, Brunn JC, Butler WT (1995) Bone matrix proteins in osteogenesis and remodelling in the neonatal rat mandible as studied by immunolocalization of osteopontin, bone sialoprotein, α2HS-glycoprotein and alkaline phosphatase. Arch Oral Biol 40:145–155

    Article  CAS  Google Scholar 

  • Proffit WR, Fields HW Jr, Sarver DM (2006) Contemporary orthodontics. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  • Redlich M, Asher Roos H, Reichenberg E, Zaks B, Mussig D, Baumert U et al (2004) Expression of tropoelastin in human periodontal ligament fibroblasts after simulation of orthodontic force. Arch Oral Biol 49(2):119–24

  • Saminathan A, Vinoth K, Low H, Cao T, Meikle M (2013) Engineering three-dimensional constructs of the periodontal ligament in hyaluronan–gelatin hydrogel films and a mechanically active environment. J Periodontal Res 48:790–801

    CAS  Google Scholar 

  • Schwarz AM (1932) Tissue changes incidental to orthodontic tooth movement. Int J Orthod Oral Surg Radiogr 18:331–352. doi:10.1016/S0099-6963(32)80074-8

    Article  Google Scholar 

  • Sheldrake AR (1974) The ageing, growth and death of cells. Nature 250:381–385

    Article  CAS  Google Scholar 

  • Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

  • Sodek J, Limeback HF (1979) Comparison of the rates of synthesis, conversion, and maturation of type I and type III collagens in rat periodontal tissues. J Biol Chem 254:10496–10502

    CAS  Google Scholar 

  • Wescott DC, Pinkerton MN, Gaffey BJ, Beggs KT, Milne TJ, Meikle MC (2007) Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res 86:1212–1216. doi:10.1177/154405910708601214

    Article  CAS  Google Scholar 

  • Xiao L, Tsutsui T (2013) Cell death and cavitation: the beginning of organogenesis. J Tissue Sci Eng 4:e122

    Google Scholar 

  • Yamada S, Tomoeda M, Ozawa Y, Yoneda S, Terashima Y, Ikezawa K, Ikegawa S, Saito M, Toyosawa S, Murakami S (2007) PLAP-1/asporin, a novel negative regulator of periodontal ligament mineralization. J Biol Chem 282:23070–23080

  • Yamaguchi M, Aihara N, Kojima T, Kasai K (2006) RANKL increase in compressed periodontal ligament cells from root resorption. J Dent Res 85:751–756. doi:10.1177/154405910608500812

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the international student scholarship provided by the Otsuka Toshimi Scholarship Foundation (Nos. 12-387 & 13-115). We thank Dr. Y. Honda from the Central Institute of Dental Research Osaka Dental University and Dr. N. Kishimoto from the Department of Anesthesiology, Osaka Dental University, for the valuable discussions. We thank Dr. F. Sakamoto, Dr. N. Okita, and Dr. P. Li from the Department of Orthodontics, Osaka Dental University, for their important help in this research. We also thank Mr. H. Hori from the Central Institute of Dental Research, Osaka Dental University, for his kind help with the experimental techniques.

Conflict of interest

The authors confirm that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Liao or Yoshiya Hashimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, W., Okada, M., Inami, K. et al. Cell survival and gene expression under compressive stress in a three-dimensional in vitro human periodontal ligament-like tissue model. Cytotechnology 68, 249–260 (2016). https://doi.org/10.1007/s10616-014-9775-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-014-9775-3

Keywords

Navigation