Conservation Genetics

, Volume 18, Issue 5, pp 995–1009 | Cite as

Temporal genetic dynamics of reintroduced and translocated populations of the endangered golden lion tamarin (Leontopithecus rosalia)

  • Andreia Magro Moraes
  • Carlos R. Ruiz-Miranda
  • Milton Cezar Ribeiro
  • Adriana D. Grativol
  • Carolina da S. Carvalho
  • James M. Dietz
  • Maria Cecília M. Kierulff
  • Lucas A. Freitas
  • Pedro M. GalettiJr
Research Article

Abstract

Reintroductions—captive-born animals introduced into the species’ original distribution area—and translocations—free-living animals transferred to another location within the historical distribution area—are important conservation strategies for endangered species. Genetic analyses of 239 individuals from unmanaged, translocated and reintroduced populations of Leontopithecus rosalia were performed using 14 microsatellites. These samples were collected during two periods: (a) 1996–1997 (historic), when individuals were translocated and reintroduced into forest fragments in the lowland Atlantic Forest, and (b) 2007–09 (recent). We hypothesized that effective population size and genetic diversity would increase over time and that these management strategies would affect the resulting population genetic structure. We found trends indicating that the effective population size at the translocation site increased while that at the reintroduction sites diminished over time. The inbreeding coefficient of the translocated population diminished over time (from 0.38 to 0.03) and was much lower than that of the native (0.29) and reintroduced (0.13) recent populations. We observed a greater genetic admixture among the reintroduced sites on the historic sampling, as well as a strong genetic structure at the translocation site. In the recent sampling, the population structuring became more site-related suggesting low or inconsistent gene flow between sampling sites. This research highlights how conservation management decisions have an important influence on the genetic outcome of translocations and reintroductions. Future conservation planning should consider population genetic monitoring before and after management measures and maintain population connectivity thereafter to avoid the negative effects of a population size reduction.

Keywords

Genetic management Temporal genetic sampling Conservation genetics Microsatellite Endangered species 

Notes

Acknowledgements

We are grateful for support by the LTBF and by K. De Vleeschouwer and P. Galbusera of the Centre for Research and Conservation funded by the Flemish Government. CNPq supported PMG Jr (308385/2014-4), MCR (312045/2013-1) and CRRM (472647/2009-1); and FAPESP supports MCR (2013/50421-2). Scholarship received by AMM (CAPES), CSC (FAPESP 2014/01029-5) and MCMK (PNPD/CAPES). We thank M. King, a native English speaker, for proofreading the manuscript; A. Nicodemo for assistance in the laboratory; and AMLD, especially A. Martins and P. Procópio-de-Oliveira, for providing the field data and hair samples. University of Maryland Animal Care and Use Committee approved protocols for this research. The authors thank the three anonymous reviewers for suggestions and comments, which improved the manuscript.

Supplementary material

10592_2017_948_MOESM1_ESM.tif (9.9 mb)
Supplementary material 1 (TIF 10160 KB)
10592_2017_948_MOESM2_ESM.tif (57.2 mb)
Supplementary material 2 (TIF 58555 KB)
10592_2017_948_MOESM3_ESM.doc (390 kb)
Supplementary material 3 (DOC 389 KB)
10592_2017_948_MOESM4_ESM.doc (30 kb)
Supplementary material 4 (DOC 29 KB)
10592_2017_948_MOESM5_ESM.doc (29 kb)
Supplementary material 5 (DOC 29 KB)

References

  1. Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190. doi:10.1002/zoo.1430050212 CrossRefGoogle Scholar
  2. Anderson EC, Dunham KK (2008) The influence of family groups on inferences made with the program structure. Mol Ecol Resour 8:1219–1229. doi:10.1111/j.1755-0998.2008.02355.x CrossRefPubMedGoogle Scholar
  3. Baker AJ, Dietz JM (1996) Immigration in wild groups of golden lion tamarins (Leontopithecus rosalia). Am J Primatol 38:47–56CrossRefGoogle Scholar
  4. Baker AJ, Dietz JM, Kleiman DG (1993) Behavioural evidence for monopolization of paternity in multi-male groups of golden lion tamarins. Anim Behav 46:1091–1103. doi:10.1006/anbe.1993.1299 CrossRefGoogle Scholar
  5. Baker AJ, Bales K, Dietz J (2002) Mating system and group dynamics in lion tamarins. In: Kleiman DG, Rylands AB (eds) Lion tamarins: biology and conservation. Smithsonian Inst press, Washington, DC, pp 188–212Google Scholar
  6. Ballou JD, Cooper A (1992) Genetic management strategies for endangered captive populations: the role of genetic and reproductive technology. Symp Zool Soc Lond 64:183–206Google Scholar
  7. Ballou JD, Foose T (2010) Demographic and genetic management of captive populations. In: Kleiman DG, Thompson KV, Baer CK (eds) Wild mammals in captivity. Principles and techniques for zoo management. University of Chicago Press, USA, pp 263–283Google Scholar
  8. Ballou JD, Kleiman DG, Mallinson JJC et al (2002) History, management, and conservation role of the captive lion tamarin populations. In: Kleiman DG, Rylands AB (eds) Lion tamarins: biology and conservation. Smithsonian Inst press, Washington, DC, pp 95–116Google Scholar
  9. Beck BB, Castro MI (1994) Environments for endangered primates. In: Giubbons EF, Wyers E, Waters E, Menzel E (eds) Naturalistic environments in captivity for animal behavior research. State University of New York, Albany, pp 209–270Google Scholar
  10. Beck BB, Kleiman DG, Dietz JM et al (1991) Losses and reproduction in reintroduced golden lion tamarins, Leontopithecus rosalia. Dodo 27:50–61Google Scholar
  11. Beck BB, Castro MI, Stoinski TS, Ballou JD (2002) The effects of prerelease environments and postrelease management on survivorship in reintroduced golden lion tamarins. In: Kleiman DG, Rylands AB (eds) Lion tamarins: biology and conservation. Smithsonian Inst press, Washington, DC, pp 188–212Google Scholar
  12. Bonin A, Bellemain E, Eidesen PB et al (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273. doi:10.1111/j.1365-294X.2004.02346.x CrossRefPubMedGoogle Scholar
  13. Bouzat JL, Johnson JA, Toepfer JE et al (2009) Beyond the beneficial effects of translocations as an effective tool for the genetic restoration of isolated populations. Conserv Genet 10:191–201. doi:10.1007/s10592-008-9547-8 CrossRefGoogle Scholar
  14. Brekke P, Bennett PM, Santure AW, Ewen JG (2011) High genetic diversity in the remnant island population of hihi and the genetic consequences of re-introduction. Mol Ecol 20:29–45. doi:10.1111/j.1365-294X.2010.04923.x CrossRefPubMedGoogle Scholar
  15. Bristol RM, Tucker R, Dawson DA et al (2013) Comparison of historical bottleneck effects and genetic consequences of re-introduction in a critically endangered island passerine. Mol Ecol 22:4644–4662. doi:10.1111/mec.12429 CrossRefPubMedGoogle Scholar
  16. Cain CM, Livieri TM, Swanson BJ (2011) Genetic evaluation of a reintroduced population of black-footed ferrets (Mustela nigripes). J Mammal 92:751–759. doi:10.1644/10-MAMM-S-104.1 CrossRefGoogle Scholar
  17. Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623. doi:10.1093/jhered/esn048 CrossRefPubMedGoogle Scholar
  18. Coimbra-Filho AF, Mittermeier RA (1977) Conservation of the Brazilian lion tamarins Leontopithecus rosalia. In: HSH Prince Rainier III of Monaco & Bourne G (eds) Primate conservation. Academic Press, London, pp 59–94Google Scholar
  19. Cullingham CI, Moehrenschlager A (2013) Temporal analysis of genetic structure to assess population dynamics of reintroduced swift foxes. Conserv Biol 27:1389–1398. doi:10.1111/cobi.12122 CrossRefPubMedGoogle Scholar
  20. De Barba M, Waits LP, Garton EO et al (2010) The power of genetic monitoring for studying demography, ecology and genetics of a reintroduced brown bear population. Mol Ecol 19:3938–3951. doi:10.1111/j.1365-294X.2010.04791.x CrossRefPubMedGoogle Scholar
  21. Dietz JM, Baker AJ (1993) Polygyny and female reproductive success in golden lion tamarins, Leontopithecus rosalia. Anim Behav 46:1067–1078CrossRefGoogle Scholar
  22. Dietz JM, Baker AJ, Miglioretti D (1994) Seasonal variation in reproduction, juvenile growth, and adult body mass in golden lion tamarins (Leontopithecus rosalia). Am J Primatol 34:115–132. doi:10.1002/ajp.1350340204 CrossRefGoogle Scholar
  23. Do C, Waples RS, Peel D et al (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214. doi:10.1111/1755-0998.12157 CrossRefPubMedGoogle Scholar
  24. Dobson A, Ralls K, Foster M et al (1999) Corridors: reconnecting fragmented landscapes. In: Soulé ME, Terborgh J (eds) Continental conservation: scientific foundations of regional reserve networks. Island Press, Washington, DC, pp 129–170Google Scholar
  25. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  26. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  27. Fischer J, Lindenmayer DB (2000) An assessment of the published results of animal relocations. Biol Conserv 96:1–11. doi:10.1016/S0006-3207(00)00048-3 CrossRefGoogle Scholar
  28. Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107. doi:10.1017/S0016672308009695 CrossRefGoogle Scholar
  29. Frankham R, Ballou J, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  30. Franklin IR, Frankham R (1998) How large must populations be to retain evolutionary potential? Anim Conserv 1:69–70CrossRefGoogle Scholar
  31. Galbusera PHA, Gillemot S (2008) Polymorphic microsatellite markers for the endangered golden-headed lion tamarin, Leontopithecus chrysomelas (Callitrichidae). Conserv Genet 9:731–733. doi:10.1007/s10592-007-9370-7 CrossRefGoogle Scholar
  32. Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 2:184–186. doi:10.1111/j.1471-8278.2004.00828.x CrossRefGoogle Scholar
  33. Grativol AD (2003) DNA antigo e genética da conservação do mico-leão-dourado (Leontopithecus rosalia): estrutura genética em duas escalas de tempo e sua relação com a fragmentação da Mata Atlântica. Acad. Thesis, Universidade Estadual do Norte FluminenseGoogle Scholar
  34. Grativol AD, Ballou JD, Fleischer RC (2001) Microsatellite variation within and among recently isolated populations of golden lion tamarins (Leontopithecus rosalia). Conserv Genet 2:1–9CrossRefGoogle Scholar
  35. Griffith B, Scott J, Carpenter J, Reed C (1989) Translocation as a species conservation tool: status an strategy. Science 245:477–480CrossRefPubMedGoogle Scholar
  36. Guedes-Bruni RR, Silva Neto SJ da, Morim MP, Mantovani W (2006) Composição florística e estrutura de dossel em trecho de Floresta Ombrófila Densa Atlântica sobre morrote mamelonar na Reserva Biológica de Poço das Antas, Silva Jardim, Rio de Janeiro, Brazil. Rodriguésia 57:429–442Google Scholar
  37. Habel JC, Husemann M, Finger A et al (2014) The relevance of time series in molecular ecology and conservation biology. Biol Rev 89:484–492. doi:10.1111/brv.12068 CrossRefPubMedGoogle Scholar
  38. Holst B, Medici E, Marinho-Filho O et al (2006) Lion tamarin population and habitat viability assessment workshop2005: final report. Apple Valley, MN, USAGoogle Scholar
  39. ICMBio (2016) Unidades de Conservação. http://www.icmbio.gov.br/portal/unidades-de-conservacao.html. Accessed 15 Jan 2016
  40. IUCN (1987) The IUCN position statement on translocation of living organisms: introductions, re-introductions and re-stocking. https://portals.iucn.org/library/node/6507. Accessed 30 Sep 2016
  41. IUCN/SSC (2013) Guidelines for reintroductions and other conservation translocations. Version 1.0. Gland, IUCN Species Survival Commission, SwitzerlandGoogle Scholar
  42. Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics 177:927–935. doi:10.1534/genetics.107.075481 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. doi:10.1111/j.1471-8286.2004.00845.x CrossRefGoogle Scholar
  44. Kalinowski ST (2011) The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106:625–632. doi:10.1038/hdy.2010.95 CrossRefPubMedGoogle Scholar
  45. Kamath PL, Haroldson MA, Luikart G et al (2015) Multiple estimates of effective population size for monitoring a long-lived vertebrate: an application to Yellowstone grizzly bears. Mol Ecol 24:5507–5521. doi:10.1111/mec.13398 CrossRefPubMedGoogle Scholar
  46. Kennington WJ, Hevroy TH, Johnson MS (2012) Long-term genetic monitoring reveals contrasting changes in the genetic composition of newly established populations of the intertidal snail Bembicium vittatum. Mol Ecol 21:3489–3500. doi:10.1111/j.1365-294X.2012.05636.x CrossRefGoogle Scholar
  47. Kierulff MCM (2000) Ecology and Behavior of translocated groups of golden lion tamarin (Leontopitehcus rosalia). Acad. Thesis, University of CambridgeGoogle Scholar
  48. Kierulff MCM, Procópio-de-Oliveira P (1996) Re-assessing the status and conservation of the golden lion tamarin (Leontopithecus rosalia) in wild. Dodo J Jersey Wildl Preservation Trust 32:98–115Google Scholar
  49. Kierulff MCM, Rylands AB (2003) Census and distribution of the golden lion tamarin (Leontopithecus rosalia). Am J Primatol 59:29–44. doi:10.1002/ajp.10064 CrossRefPubMedGoogle Scholar
  50. Kierulff MCM, Procópio-de-Oliveira PP, Beck BB et al (2002) Reintroduction and translocation as conservation tools for golden lion tamarins. In: Kleiman DG, Rylands AB (eds) Lion tamarins: biology and conservation. Smithsonian Inst press, Washington, DC, pp 271–282Google Scholar
  51. Kierulff MCM, Rylands AB, Procópio-de-Oliveira MM (2008) Leontopithecus rosalia. The IUCN Red List of Threatened Species 2008: e T11506A3287321. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T11506A3287321.en. Acessed 07 March 2016
  52. Kierulff MCM, Ruiz-Miranda CR, Procópio-de-Oliveira P et al (2012) The Golden lion tamarin Leontopithecus rosalia: a conservation success story. Int Zoo Yearb 46:36–45. doi:10.1111/j.1748-1090.2012.00170.x CrossRefGoogle Scholar
  53. Kleiman D (1989) Reintroduction of captive mammals for conservation. Bioscience 39:152–161. doi:10.2307/1311025 CrossRefGoogle Scholar
  54. Kleiman DG, Beck BB, Dietz JM et al (1986) Conservation program for the golden lion tamarin: captive research and management, ecological studies, educational strategies, and reintroduction. In: Benirhke K (ed) Primates. Springer-Verlag New York Inc., New York, pp 959–979CrossRefGoogle Scholar
  55. Kuo CH, Janzen FJ (2003) BOTTLESIM: a bottleneck simulation program for long-lived species with overlapping generations. Mol Ecol Notes 3:669–673. doi:10.1046/j.1471-8286.2003.00532.x CrossRefGoogle Scholar
  56. Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689PubMedPubMedCentralGoogle Scholar
  57. Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them. Mol Ecol 24:3223–3231. doi:10.1111/mec.13243 CrossRefPubMedGoogle Scholar
  58. Michaelides S, Cole N, Funk SM (2015) Translocation retains genetic diversity of a threatened endemic reptile in Mauritius. Conserv Genet 16:661–672. doi:10.1007/s10592-014-0691-z CrossRefGoogle Scholar
  59. Mickelberg JL (2011) Understanding and managing isolation in a fragmented population of golden lion tamarins, Leontopithecus rosalia. Dissertation, George Mason UniversityGoogle Scholar
  60. Mock KE, Latch EK, Rhodes OE (2004) Assessing losses of genetic diversity due to translocation: Long-term case histories in Merriam’s turkey (Meleagris gallopavo merriami). Conserv Genet 5:631–645. doi:10.1007/s10592-004-1849-x CrossRefGoogle Scholar
  61. Mowry RA, Schneider TM, Latch EK et al (2015) Genetics and the successful reintroduction of the Missouri river otter. Anim Conserv 18:196–206. doi:10.1111/acv.12159 CrossRefGoogle Scholar
  62. Ortego J, Yannic G, Shafer ABA et al (2011) Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population. Mol Ecol 20:1601–1611. doi:10.1111/j.1365-294X.2011.05022.x CrossRefPubMedGoogle Scholar
  63. Parker KA (2008) Translocations: providing outcomes for wildlife, resource managers, scientists, and the human community. Restor Ecol 16:204–209. doi:10.1111/j.1526-100X.2008.00388.x CrossRefGoogle Scholar
  64. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  65. Perez-Sweeney BM, Valladares-Padua C, Burrell AS et al (2005) Dinucleotide microsatellite primers designed for a critically endangered primate, the black lion tamarin (Leontopithecus chrysopygus). Mol Ecol Notes 5:198–201. doi:10.1111/j.1471-8286.2005.00875.x CrossRefGoogle Scholar
  66. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. doi:10.1111/j.1471-8286.2007.01758.x PubMedPubMedCentralGoogle Scholar
  67. Procópio-de-Oliveira P, Grativol A, Ruiz-Miranda C (2008) Conservação do mico-leão-dourado: enfrentando os desafios de uma paisagem fragmentada. Universidade Estadual do Norte Fluminense Darcy Ribeiro press, Campos dos Goytacazes, RJ, BrazilGoogle Scholar
  68. R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  69. Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. doi:10.1016/j.biocon.2009.02.021 CrossRefGoogle Scholar
  70. Rice WR (1989) Analyzing tables of statistical tests. Evolution Int J Org Evolution 43:223–225CrossRefGoogle Scholar
  71. Sasmal I, Jenks JA, Waits LP et al (2013) Genetic diversity in a reintroduced swift fox population. Conserv Genet 14:93–102. doi:10.1007/s10592-012-0429-8 CrossRefGoogle Scholar
  72. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234CrossRefPubMedGoogle Scholar
  73. Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452. doi:10.1007/s10592-008-9622-1 CrossRefGoogle Scholar
  74. Seddon PJ, Armstrong DP, Maloney RF (2007) Developing the science of reintroduction biology. Conserv Biol 21:303–312. doi:10.1111/j.1523-1739.2006.00627.x CrossRefPubMedGoogle Scholar
  75. Sigg DP, Goldizen AW, Pople AR (2005) The importance of mating system in translocation programs: reproductive success of released male bridled nailtail wallabies. Biol Conserv 123:289–300. doi:10.1016/j.biocon.2004.11.017 CrossRefGoogle Scholar
  76. Sinnock P (1975) The wahlund effect for the two-locus model. Am Nat 109:565–569. doi:10.2307/2678832 CrossRefGoogle Scholar
  77. Stephen C, Whittaker D, Gillis D et al (2005) Genetic consequences of reintroductions: an example from oregon pronghorn antelope (Antilocapra americana). J Wildl Manage 69:1463–1474. doi:10.2193/0022-541X(2005)69[1463:GCORAE]2.0.CO;2 CrossRefGoogle Scholar
  78. Stoinski TS, Beck BB, Bowman MD, Lenhardt J (1997) The gateway zoo program: a recent initiative in golden lion tamarin reintroductions. In: Wallis J (ed) Primate conservation: the role of zoological parks. American Society of Primatologists, Norman, OK, pp 113–130Google Scholar
  79. Thrimawithana AH, Ortiz-Catedral L, Rodrigo A, Hauber ME (2013) Reduced total genetic diversity following translocations? A metapopulation approach. Conserv Genet 14:1043–1055. doi:10.1007/s10592-013-0494-7 CrossRefGoogle Scholar
  80. Tollington S, Jones CG, Greenwood A et al (2013) Long-term, fine-scale temporal patterns of genetic diversity in the restored Mauritius parakeet reveal genetic impacts of management and associated demographic effects on reintroduction programmes. Biol Conserv 161:28–38. doi:10.1016/j.biocon.2013.02.013 CrossRefGoogle Scholar
  81. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  82. Wang J (2005) Estimation of effective population sizes from data on genetic markers. Philos Trans R Soc Lond B Biol Sci 360:1395–1409. doi:10.1098/rstb.2005.1682 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Mol Ecol 14:3335–3352. doi:10.1111/j.1365-294X.2005.02673.x CrossRefPubMedGoogle Scholar
  84. Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184. doi:10.1007/s10592-005-9100-y CrossRefGoogle Scholar
  85. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756. doi:10.1111/j.1755-0998.2007.02061.x CrossRefPubMedGoogle Scholar
  86. Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262. doi:10.1111/j.1752-4571.2009.00104.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Andreia Magro Moraes
    • 1
  • Carlos R. Ruiz-Miranda
    • 1
  • Milton Cezar Ribeiro
    • 2
  • Adriana D. Grativol
    • 1
  • Carolina da S. Carvalho
    • 2
  • James M. Dietz
    • 3
  • Maria Cecília M. Kierulff
    • 4
  • Lucas A. Freitas
    • 5
  • Pedro M. GalettiJr
    • 6
  1. 1.Programa de Pós-graduação em Ecologia e Recursos NaturaisUniversidade Estadual do Norte Fluminense (UENF)Rio de JaneiroBrazil
  2. 2.Departamento de EcologiaUniversidade Estadual Paulista (UNESP)São PauloBrazil
  3. 3.Save The Golden Lion TamarinSilver SpringUSA
  4. 4.Programa de Pós-graduação em Biodiversidade Tropical, Centro Universitário Norte do Espírito Santo (CEUNES)Universidade Federal do Espírito Santo (UFES)São MateusBrazil
  5. 5.Departamento de GenéticaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  6. 6.Departamento de Genética e EvoluçãoUniversidade Federal de São Carlos (UFSCar)São CarlosBrazil

Personalised recommendations