Skip to main content
Log in

The discretizable molecular distance geometry problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Given a simple weighted undirected graph G=(V,E,d) with d:E→ℝ+, the Molecular Distance Geometry Problem (MDGP) consists in finding an embedding x:V→ℝ3 such that ‖x u x v ‖=d uv for each {u,v}∈E. We show that under a few assumptions usually satisfied in proteins, the MDGP can be formulated as a search in a discrete space. We call this MDGP subclass the Discretizable MDGP (DMDGP). We show that the DMDGP is NP-hard and we propose a solution algorithm called Branch-and-Prune (BP). The BP algorithm performs remarkably well in practice in terms of speed and solution accuracy, and can be easily modified to find all incongruent solutions to a given DMDGP instance. We show computational results on several artificial and real-life instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, L.T.H.: Solving large scale molecular distance geometry problems by a smoothing technique via the Gaussian transform and d.c. programming. J. Glob. Optim. 27, 375–397 (2003)

    Article  MATH  Google Scholar 

  2. An, L.T.H., Tao, P.D.: Large-scale molecular optimization from distance matrices by a d.c. optimization approach. SIAM J. Optim. 14, 77–114 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachrach, J., Taylor, C.: Localization in sensor networks. In: Stojmenović, I. (ed.) Handbook of Sensor Networks, pp. 3627–3643. Wiley, New York (2005)

    Google Scholar 

  4. Barker, G.: The lattice of faces of a finite dimensional cone. Linear Algebra Appl. 7(1), 71–82 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berger, B., Kleinberg, J., Leighton, T.: Reconstructing a three-dimensional model with arbitrary errors. J. ACM 46(2), 212–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  7. Biswas, P.: Semidefinite programming approaches to distance geometry problems. Ph.D. thesis, Stanford University (2007)

  8. Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks (IPSN04), New York, NY, USA, pp. 46–54. ACM, New York (2004)

    Chapter  Google Scholar 

  9. Biswas, P., Ye, Y.: A distributed method for solving semidefinite programs arising from ad hoc wireless sensor network localization. In: Multiscale Optimization Methods and Applications, vol. 82, pp. 69–84. Springer, Berlin (2006)

    Chapter  Google Scholar 

  10. Biswas, P., Lian, T., Wang, T., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sens. Networks 2, 188–220 (2006)

    Article  Google Scholar 

  11. Biswas, P., Liang, T.-C., Toh, K.-C., Wang, T.-C., Ye, Y.: Semidefinite programming approaches for sensor network localization with noisy distance measurements. IEEE Trans. Autom. Sci. Eng. 3, 360–371 (2006)

    Article  Google Scholar 

  12. Biswas, P., Toh, K.C., Ye, Y.: A distributed SDP approach for large-scale noisy anchor-free graph realization with applications to molecular conformation. SIAM J. Sci. Comput. 30(3), 1251–1277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Blumenthal, L.: Theory and Applications of Distance Geometry. Oxford University Press, London (1953)

    MATH  Google Scholar 

  14. Burkowski, F.: Structural Bioinformatics: An Algorithmic Approach. CRC Press, Boca Raton (2009)

    MATH  Google Scholar 

  15. Carvalho, R.S., Lavor, C., Protti, F.: Extending the geometric build-up algorithm for the molecular distance geometry problem. Inf. Process. Lett. 108, 234–237 (2008)

    Article  Google Scholar 

  16. Connelly, R.: Generic global rigidity. Discrete Comput. Geom. 33, 549–563 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Creighton, T.: Proteins: Structures and Molecular Properties. Freeman, New York (1993)

    Google Scholar 

  18. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)

    MATH  Google Scholar 

  19. Dattorro, J.: Convex Optimization and Euclidean Distance Geometry. Annual Reviews, Palo Alto (2005)

    Google Scholar 

  20. Dong, Q., Wu, Z.: A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. J. Glob. Optim. 22, 365–375 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. J. Glob. Optim. 26, 321–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eren, T., Goldenberg, D.K., Whiteley, W., Yang, Y.R., Morse, A.S., Anderson, B.D.O., Belhumeur, P.N.: Rigidity, computation, and randomization in network localization. In: IEEE Infocom Proceedings, pp. 2673–2684 (2004)

    Google Scholar 

  23. Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5(6), 345 (1962)

    Article  Google Scholar 

  24. Glunt, W., Hayden, T.H., Hong, S., Wells, J.: An alternating projection algorithm for computing the nearest Euclidean distance matrix. SIAM J. Matrix Anal. Appl. 11(4), 589–600 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grosso, A., Locatelli, M., Schoen, F.: Solving molecular distance geometry problems by global optimization algorithms. Comput. Optim. Appl. 43, 23–27 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Havel, T.: Distance geometry. In: Grant, D., Harris, R. (eds.) Encyclopedia of Nuclear Magnetic Resonance, pp. 1701–1710. Wiley, New York (1995)

    Google Scholar 

  27. Hendrickson, B.A.: The molecule problem: exploiting structure in global optimization. SIAM J. Optim. 5, 835–857 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, H.-X., Liang, Z.-A., Pardalos, P.: Some properties for the Euclidean distance matrix and positive semidefinite matrix completion problems. J. Glob. Optim. 25, 3–21 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Johnson, C., Kroschel, B., Wolkowicz, H.: An interior-point method for approximate positive semidefinite completions. Comput. Optim. Appl. 9, 175–190 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kearsley, A., Tapia, R., Trosset, M.: The solution of the metric stress and stress problems in multidimensional scaling by newton’s method. Comput. Stat. 13, 369–396 (1998)

    MATH  Google Scholar 

  31. Krislock, N.: Semidefinite facial reduction for low-rank Euclidean distance matrix completion. Ph.D. thesis, University of Waterloo (2010)

  32. Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite representations and facial reductions. SIAM J. Optim. 20, 2679–2708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Laurent, M.: Matrix completion problems. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, 2nd edn., pp. 1967–1975. Springer, New York (2009)

    Chapter  Google Scholar 

  34. Lavor, C.: On generating instances for the molecular distance geometry problem. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation, pp. 405–414. Springer, Berlin (2006)

    Google Scholar 

  35. Lavor, C., Liberti, L., Maculan, N.: Grover’s algorithm applied to the molecular distance geometry problem. In: Proc. of VII Brazilian Congress of Neural Networks, Natal, Brazil (2005)

    Google Scholar 

  36. Lavor, C., Liberti, L., Maculan, N.: Computational experience with the molecular distance geometry problem. In: Pintér, J. (ed.) Global Optimization: Scientific and Engineering Case Studies, pp. 213–225. Springer, Berlin (2006)

    Google Scholar 

  37. Lavor, C., Liberti, L., Maculan, N.: The discretizable molecular distance geometry problem. Technical Report, arXiv:q-bio/0608012 (2006)

  38. Lavor, C., Liberti, L., Maculan, N.: Molecular distance geometry problem. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, 2nd edn., pp. 2305–2311. Springer, New York (2009)

    Google Scholar 

  39. Lavor, C., Liberti, L., Mucherino, A., Maculan, N.: On a discretizable subclass of instances of the molecular distance geometry problem. In: Shin, D. (ed.) Proceedings of the 24th Annual ACM Symposium on Applied Computing, pp. 804–805. ACM, New York (2009)

    Google Scholar 

  40. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: Computing artificial backbones of hydrogen atoms in order to discover protein backbones. In: Proceedings of the International Multiconference on Computer Science and Information Technology, Mragowo, Poland, pp. 751–756. IEEE Press, New York (2009)

    Google Scholar 

  41. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: On the solution of molecular distance geometry problems with interval data. In: Proceedings of the International Workshop on Computational Proteomics, Hong Kong. IEEE Press, New York (2010)

    Google Scholar 

  42. Lavor, C., Lee, J., Lee-St. John, A., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optim. Lett. (accepted for publication)

  43. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: On the computation of protein backbones by using artificial backbones of hydrogens. J. Glob. Optim. (accepted). doi:10.1007/s10898-010-9584-y

  44. Liberti, L., Lavor, C., Maculan, N.: Double VNS for the molecular distance geometry problem. In: Proc. of Mini Euro Conference on Variable Neighbourhood Search, Tenerife, Spain (2005)

    Google Scholar 

  45. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liberti, L., Lavor, C., Maculan, N., Marinelli, F.: Double variable neighbourhood search with smoothing for the molecular distance geometry problem. J. Glob. Optim. 43, 207–218 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2010)

    Article  MathSciNet  Google Scholar 

  48. Liberti, L., Masson, B., Lavor, C., Lee, J., Mucherino, A.: On the number of solutions of the discretizable molecular distance geometry problem. Technical Report, arXiv:1010.1834v1 [cs.DM] (2010)

  49. Moré, J.J., Wu, Z.: Global continuation for distance geometry problems. SIAM J. Optim. 7(3), 814–846 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  50. Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. J. Glob. Optim. 15, 219–234 (1999)

    Article  MATH  Google Scholar 

  51. Mucherino, A., Lavor, C.: The branch and prune algorithm for the molecular distance geometry problem with inexact distances. In: Proceedings of the International Conference on Computational Biology. World Academy of Science, Engineering and Technology, vol. 58, pp. 349–353 (2009)

    Google Scholar 

  52. Mucherino, A., Lavor, C., Maculan, N.: The molecular distance geometry problem applied to protein conformations. In: Cafieri, S., Mucherino, A., Nannicini, G., Tarissan, F., Liberti, L. (eds.) Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, pp. 337–340. École Polytechnique, Paris (2009)

    Google Scholar 

  53. Mucherino, A., Lavor, C., Liberti, L., Talbi, E.-G.: A parallel version of the branch & prune algorithm for the molecular distance geometry problem. In: ACS/IEEE International Conference on Computer Systems and Applications (AICCSA10), Hammamet, Tunisia. IEEE Press, New York (2010)

    Google Scholar 

  54. Mucherino, A., Liberti, L., Lavor, C., Maculan, N.: Comparisons between an exact and a metaheuristic algorithm for the molecular distance geometry problem. In: Rothlauf, F. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, Montreal, pp. 333–340. ACM, New York (2009)

    Google Scholar 

  55. Mucherino, A., Liberti, L., Lavor, C.: MD-jeep: an implementation of a branch-and-prune algorithm for distance geometry problems. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) Mathematical Software. LNCS, vol. 6327, pp. 186–197. Springer, New York (2010)

    Google Scholar 

  56. Phillips, A.T., Rosen, J.B., Walke, V.H.: Molecular structure determination by convex underestimation of local energy minima. In: Pardalos, P.M., Shalloway, D., Xue, G. (eds.) Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding, vol. 23, pp. 181–198. American Mathematical Society, Providence (1996)

    Google Scholar 

  57. Pogorelov, A.: Geometry. Mir, Moscow (1987)

    Google Scholar 

  58. Roth, B.: Rigid and flexible frameworks. Am. Math. Mon. 88(1), 6–21 (1981)

    Article  MATH  Google Scholar 

  59. Santana, R., Larrañaga, P., Lozano, J.A.: Combining variable neighbourhood search and estimation of distribution algorithms in the protein side chain placement problem. In: Proc. of Mini Euro Conference on Variable Neighbourhood Search, Tenerife, Spain (2005)

    Google Scholar 

  60. Santana, R., Larra naga, P., Lozano, J.A.: Side chain placement using estimation of distribution algorithms. Artif. Intell. Med. 39, 49–63 (2007)

    Article  Google Scholar 

  61. Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  62. Schlick, T.: Molecular Modelling and Simulation: An Interdisciplinary Guide. Springer, New York (2002)

    Google Scholar 

  63. Schoenberg, I.J.: Remarks to Maurice Fréchet’s article “sur la définition axiomatique d’une classe d’espaces distanciés vectoriellement applicable sur l’espace de Hilbert”. Ann. Math. 36(3), 724–732 (1935)

    Article  MathSciNet  Google Scholar 

  64. So, M.-C., Ye, Y.: Theory of semidefinite programming for sensor network localization. Math. Program. 109, 367–384 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Trosset, M.: Applications of multidimensional scaling to molecular conformation. Comput. Sci. Stat. 29, 148–152 (1998)

    Google Scholar 

  66. Wang, L., Mettu, R., Donald, B.R.: An algebraic geometry approach to protein structure determination from nmr data. In: Proceedings of the Computational Systems Bioinformatics Conference. IEEE Press, New York (2005)

    Google Scholar 

  67. Wu, D., Wu, Z.: An updated geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. J. Glob. Optim. 37, 661–673 (2007)

    Article  MATH  Google Scholar 

  68. Wu, D., Wu, Z., Yuan, Y.: Rigid versus unique determination of protein structures with geometric buildup. Optim. Lett. 2(3), 319–331 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. Zou, Z., Bird, R., Schnabel, R.: A stochastic/perturbation global optimization algorithm for distance geometry problems. J. Glob. Optim. 11, 91–105 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Liberti.

Additional information

The present work is based on the preliminary 2006 technical report [37].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavor, C., Liberti, L., Maculan, N. et al. The discretizable molecular distance geometry problem. Comput Optim Appl 52, 115–146 (2012). https://doi.org/10.1007/s10589-011-9402-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9402-6

Keywords

Navigation